
Appendix A Model Algebra, Proofs, and Calibration

A.1 Derivation of equation (2.2)

Type-(i,i′) workers solve:

max
qc,qr,h

Bi

(
Qi

δ

)δ
(

h(i, i′)
1 − δ

)1−δ

s.t. w(i, i′) = pciqc(i, i′) + priqr(i, i′) + rih(i, i′)

resulting in first order conditions (FOC):

[qc(i, i′)]
(

δ

1 − δ

)1−δ

qc(i, i′)− 1
σ BiQ

1−σ(1−δ)
σ

i h(i, i′)1−δ − λpci = 0

[qr(i, i′)]
(

δ

1 − δ

)1−δ

qr(i, i′)− 1
σ BiQ

1−σ(1−δ)
σ

i h(i, i′)1−δ − λpri = 0

[h(i, i′)]
(1 − δ

δ

)δ

h−δBiQ
δ
i − λri = 0

where λ is the shadow price of the wage w(i, i′). Equating the FOCs for qc(i, i′) and qr(i, i′)
then solving for qr(i, i′) reveals:

qr(i, i′) =
(

pri

pci

)−σ

qc(i, i′) (A.1)

Equating the FOCs for qc(i, i′) and h(i, i′) then solving for h(i, i′) implies:

h(i, i′) =
(1 − δ

δ

)
p−σ

ci qc(i, i′)P 1−σ
i

ri

(A.2)

where Pi ≡ (p1−σ
ci + p1−σ

ri )
1

1−σ is the CES price index for location i.
Given the type-(i, i′) worker’s utility takes on a Cobb-Douglas form, we can express the

total amount she spends on consumption goods as:

pciqci + priqri = δw(i, i′)

Substituting the above and (A.7) into the budget constraint and solving for qc(i, i′) yields
the worker’s Marshallian demand for qc(i, i′):

qc(i, i′) = δ
(

pci

Pi

)−σ w(i, i′)
Pi

(A.3)

Then, substituting (A.3) into (A.1) and (A.2) yields the worker’s Marshallian demands for
qr(i, i′) and h(i, i′):

qr(i, i′) = δ
(

pri

Pi

)−σ w(i, i′)
Pi

(A.4)
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h(i, i′) = (1 − δ)w(i, i′)
ri

(A.5)

Finally, substituting equations (A.3) through (A.5) into the worker’s utility function results
in the indirect utility function equation (2.2):

V (i, i′) = Biw(i, i′)
P δ

i r1−δ
i

A.2 Derivation of equation (2.6)

Following the set-up in the theoretical framework, letting pc ≡ 1, and applying the stated
simplifying assumptions that τcr = τrc = τ , Lr(c, r) = 0, and κrc = κ this model can be
summarised by the following system of equations:

Yc = AcL
1+α
c (A.6)

Yr = ArLr (A.7)
wc = AcL

α
c (A.8)

wr = prAr (A.9)

Pc =
[
1 + (τpr)1−σ

] 1
1−σ (A.10)

Pr =
[
τ 1−σ + p1−σ

r

] 1
1−σ (A.11)

V (c, c) = Bcwc

P δ
c r1−δ

c

(A.12)

V (r, c) = Brwc

κP δ
r r1−δ

r

(A.13)

V (r, r) = Brwr

P δ
r r1−δ

r

(A.14)

h(c, c) = (1 − δ)wc

rc

(A.15)

h(r, c) = (1 − δ) wc

κrr

(A.16)

h(r, r) = (1 − δ)wr

rr

(A.17)

Xc = δ

 1
P 1−σ

c

(
wcLc(c, c)

)
+ τ−σ

P 1−σ
r

(
wrLr(r, r) + wc

κ
Lc(r, c)

) (A.18)

Xr = δ

(τpr)−σ

P 1−σ
c

(
wcLc(c, c)

)
+ p−σ

r

P 1−σ
r

(
wrLr(r, r) + wc

κ
Lc(r, c)

) (A.19)

As per Definition 1, there are four equilibrium conditions:

1. Goods market clearing: Yc + Yr = Xc + Xr

2. Labour market clearing: Lc + Lr = Lc(c, c) + Lc(r, c) + Lr(r, r) = L

A.2



3. Housing market clearing: Hc = h(c, c)Lc(c, c) and Hr = h(r, r)Lr(r, r) + h(r, c)Lc(r, c)

4. No spatial arbitrage: V (c, c) = V (r, c) = V (c, c) = V

By combining equilibrium requirements 1 through 4 with equations (A.6) through (A.19),
equation (2.6) results.

Housing market clearing implies the total housing stock, which is exogenously determined,
in a given location equals the total local demand for housing. Substituting equations (A.15)
through (A.17) into equilibrium condition 3 reveal:

Hc = h(c, c)Lc(c, c) = (1 − δ)
rc

wcLc(c, c)

=⇒ rc = (1 − δ)
Hc

wcLc(c, c) (A.20)

Hr = h(r, r)Lr(r, r) + h(r, c)Lc(r, c) = (1 − δ)
rc

(
wrLr(r, r) + wc

κ
Lc(r, c)

)
=⇒ rr = (1 − δ)

Hr

(
wrLr(r, r) + wc

κ
Lc(r, c)

)
(A.21)

Substituting equation (A.20) into equation (A.12) and equation (A.21) into equations (A.13)
and (A.14) yield:

V (c, c) = BcH
1−δ
c wδ

c

(1 − δ)1−δP δ
c Lc(c, c)1−δ

(A.22)

V (r, c) = BrH
1−δ
r wc

κ(1 − δ)1−δP δ
r

(
wrLr(r, r) + wc

κ
Lc(r, c)

)1−δ (A.23)

V (r, r) = BrH
1−δ
r wr

(1 − δ)1−δP δ
r

(
wrLr(r, r) + wc

κ
Lc(r, c)

)1−δ (A.24)

No spatial arbitrage (equilibrium condition 4) implies that V (c, c) = V , V (r, r) = V (r, c),
and V (r, r) = V (c, c) hold simultaneously. The first equality between equation (A.22) and V
implies:

V (c, c) = V : BcH
1−δ
c wδ

c

(1 − δ)1−δP δ
c Lc(c, c)1−δ

= V

=⇒ Lc(c, c) = Bc

1
1−δ Hcw

δ
1−δ
c

(1 − δ)P
δ

1−δ
c V

1
1−δ

(A.25)
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The second equality between equations (A.23) and (A.24) reveals:

V (r, r) = V (r, c) : BrH
1−δ
r wr

(1 − δ)1−δP δ
r

(
wrLr(r, r) + wc

κ
Lc(r, c)

)1−δ

= BrH
1−δ
r wc

κ(1 − δ)1−δP δ
r

(
wrLr(r, r) + wc

κ
Lc(r, c)

)1−δ

=⇒ wr = wc

κ
(A.26)

After substituting equation (A.26) into equation (A.24), the third equality between (A.22)
into equation (A.24) implies:

V (r, r) = V (c, c) : BrH
1−δ
r wδ

c

κδ(1 − δ)1−δP δ
r

(
Lr(r, r) + Lc(r, c)

)1−δ

= BcH
1−δ
c wδ

c

(1 − δ)1−δP δ
c Lc(c, c)1−δ

=⇒ Lr(r, r) + Lc(r, c) = B
1

1−δ
r HrP

δ
1−δ

c

κ
δ

1−δ B
1

1−δ
c HcP

δ
1−δ

r

Lc(c, c)

and given the result in equation (A.25), it follows the above becomes:

=⇒ Lr(r, r) + Lc(r, c) = B
1

1−δ
r Hrw

δ
1−δ
c

(1 − δ)κ
δ

1−δ P
δ

1−δ
r V

1
1−δ

(A.27)

Adding goods demand equations (A.18) and (A.19) then substituting in results from equations
(A.25), (A.26), and (A.27) as well as the price index equations (A.10) and (A.11), total goods
demand is expressed as:

Xc + Xr = δ

[(
1 + (τpr)−σ

P 1−σ
c

)
wcLc(c, c) +

(
τ−σ + p−σ

r

P 1−σ
r

)(
wrLr(r, r) + wc

κ
Lc(r, c)

)]

= δ

[(
1 + (τpr)−σ

P 1−σ
c

)
wcLc(c, c) +

(
τ−σ + p−σ

r

P 1−σ
r

)
wc

κ

(
Lr(r, r) + Lc(r, c)

)]

=
(

δ

1 − δ

)(
wc

V

) 1
1−δ

(1 + (τpr)−σ

P 1−σ
c

)
Bc

1
1−δ Hc

P
δ

1−δ
c

+
(

τ−σ + p−σ
r

P 1−σ
r

)
B

1
1−δ
r Hr

κ
1

1−δ P
δ

1−δ
r


=
(

δ

1 − δ

)(
wc

V

) 1
1−δ

 (1 + (τpr)−σ)Bc

1
1−δ Hc

(1 + (τpr)1−σ)
σ(1−δ)−1

(σ−1)(1−δ)
+ (τ−σ + p−σ

r )Br

1
1−δ Hr

κ
1

1−δ (τ 1−σ + p1−σ
r )

σ(1−δ)−1
(σ−1)(1−δ)


(A.28)
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The equilibrium urban wage, equation (A.10), can be rearranged to reveal:

Lc = Lc(c, c) + Lc(r, c) =
(

wc

Ac

) 1
α

=⇒ Lc(r, c) =
(

wc

Ac

) 1
α

− Lc(c, c) (A.29)

Substituting this result into the labour supply equilibrium condition, condition 2, and
rearranging reveals:

Lr(r, r) = L −
(

wc

Ac

) 1
α

=⇒ Lr = L −
(

wc

Ac

) 1
α

(A.30)

Given the above, summing equations (A.6) and (A.7) and substituting equations (A.29) and
(A.30) into the result, total goods supply can be expressed:

Yc + Yr = AcL
1+α
c + ArLr

= ArL + w
1+α

α
c

A
1
α
c

− Arw
1
α
c

A
1
α
c

(A.31)

Equating the total goods supply equation (A.31) and total goods demand equation (A.28)
(i.e. the goods market clearing, condition 1) yields:

ArL+w
1+α

α
c

A
1
α
c

− Arw
1
α
c

A
1
α
c

=

(
δ

1 − δ

)(
wc

V

) 1
1−δ

 (1 + (τpr)−σ)Bc

1
1−δ Hc

(1 + (τpr)1−σ)
σ(1−δ)−1

(σ−1)(1−δ)
+ (τ−σ + p−σ

r )Br

1
1−δ Hr

κ
1

1−δ (τ 1−σ + p1−σ
r )

σ(1−δ)−1
(σ−1)(1−δ)


and since equations (A.9) and (A.26) imply pr = wr

Ar
= wc

κAr
, it follows the above is:

ArL+w
1+α

α
c

A
1
α
c

− Arw
1
α
c

A
1
α
c

=

(
δ

1 − δ

)(
wc

V

) 1
1−δ

 (1 + ( τwc

κAr
)−σ)Bc

1
1−δ Hc

(1 + ( τwc

κAr
)1−σ)

σ(1−δ)−1
(σ−1)(1−δ)

+
(τ−σ + ( wc

κAr
)−σ)Br

1
1−δ Hr

κ
1

1−δ (τ 1−σ + ( wc

κAr
)1−σ)

σ(1−δ)−1
(σ−1)(1−δ)


Multiplying both sides by (1−δ

δ
)V

1
1−δ w−σ

c and some algebra reveal the equilibrium condition

A.5



equation (2.6):

V
1

1−δ

(
1 − δ

δ

)ArL

wσ
c

+ w
1
α

−σ
c

A
1
α
c

(wc − Ar)
 =

Bc

1
1−δ Hc(1 + ( τwc

κAr
)−σ)(

wσ−1
c + (κAr

τ
)σ−1

) σ(1−δ)−1
(σ−1)(1−δ)

+
Br

1
1−δ Hr(τ−σ + ( wc

κAr
)−σ)

κ
1

1−δ

(
(wc

τ
)σ−1 + (κAr)σ−1

) σ(1−δ)−1
(σ−1)(1−δ)

A.3 Proof of Lemma 1

Proof of (i)

Proof. Consider equation (2.6). Subtract the right-hand-side (RHS) from the left-hand-side
(LHS).
(1 − δ

δ

)
ArL V

1
1−δ −

Bc

1
1−δ Hc(κAr

τ )σ(
wσ−1

c + (κAr
τ )σ−1

) σ(1−δ)−1
(σ−1)(1−δ)

− Br

1
1−δ Hr(κAr)σ

κ
1

1−δ

(
(wc

τ )σ−1 + (κAr)σ−1
) σ(1−δ)−1

(σ−1)(1−δ)

w−σ
c

︸ ︷︷ ︸
1

+
(1 − δ

δ

)
V

1
1−δ

A
1
α
c

w
1
α

−σ
c (wc − Ar)︸ ︷︷ ︸

2

+

− Bc

1
1−δ Hc(

wσ−1
c + (κAr

τ )σ−1
) σ(1−δ)−1

(σ−1)(1−δ)

− Br

1
1−δ Hr

τσκ
1

1−δ

(
(wc

τ )σ−1 + (κAr)σ−1
) σ(1−δ)−1

(σ−1)(1−δ)


︸ ︷︷ ︸

3

= 0

Define the resulting LHS (i.e., the sum of components 1 through 3) as function f : R++ → R,
which is nonlinear in a single unknown wc ∈ R++. We are interested in values of wc, labelled
w∗

c , at which f(w∗
c ) = 0 thereby implying equation (2.6) holds.

By inspection, f is continuous for all wc ∈ R++. Define fi as the component of f labelled
above as i ∈ {1, 2, 3}, let the lower bound on Hr in equation (2.7) be summarised as:

Ψ ≡
(

Bc

Br

κ

τ

) 1
1−δ

(1 − δ

δ

)L
1−δ

Aδ
r

V

Bc

τ

κ

 1
1−δ

− Hc


and set ζ ≡

(
1−δ

δ

)
V

1
1−δ

A
1
α
c

, which is strictly positive given its components are all assumed
positive. Evaluating the limit of each component of f as wc approaches zero from the right,
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observe:

lim
wc→0+

f1 =
(

BrAr

) 1
1−δ

︸ ︷︷ ︸
>0

(
Ψ − Hr

)
︸ ︷︷ ︸

<0 since Ψ<Hr

∗∞ = −∞

lim
wc→0+

f2 =



−ζ ∗ Ar ∗ 0 = 0 if σ < 1
α

−ζ ∗ Ar < 0 if σ = 1
α

−ζ ∗ Ar ∗ ∞ = −∞ if 1
α

< σ < 1+α
α

lim
wc→0+

f3 = −HcB
1

1−δ
c τ

σ(1−δ)−1
1−δ

(κAr)
σ(1−δ)−1

1−δ

− HrB
1

1−δ
r

(τκ)σA
σ(1−δ)−1

1−δ
r

< 0

Since f is linear in f1, f2, and f3, it follows that lim
wc→0+

f = lim
wc→0+

f1 + lim
wc→0+

f2 + lim
wc→0+

f3.
Thus:

lim
wc→0+

f = −∞

Then, evaluating the limit of each component as wc approaches positive infinity, we find:

lim
wc→∞

f1 =
(

BrAr

) 1
1−δ
(

Ψ − Hr

)
∗ 0 = 0

lim
wc→∞

f2 =



ζ ∗ lim
wc→∞

w
1
α

−σ
c ∗ lim

wc→∞
(wc − Ar) = ∞ if σ < 1

α

ζ ∗ lim
wc→∞

(wc − Ar) = ∞ if σ = 1
α

ζ ∗ lim
wc→∞

wc−Ar

w
σ− 1

α
c

Ĥ= µ ∗ lim
wc→∞

w
1+α

α −σ
c

σ− 1
α

= ∞ if 1
α

< σ < 1+α
α

lim
wc→∞

f3 =

−HcBc
σ − Hr

(
Br

τκ

)σ

< 0 if 1
1−δ

= σ

0 if 1
1−δ

< σ

where Ĥ denotes application of L’Hôpital’s rule. Again, linearity of f in f1, f2, and f3 implies
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lim
wc→∞

f = lim
wc→∞

f1 + lim
wc→∞

f2 + lim
wc→∞

f3, so it follows that:

lim
wc→∞

f = ∞

Given the continuity and limit behaviour of f , Bolzano’s intermediate value theorem
applies and there must exist at least one w∗

c ∈ R++ that satisfies equation (2.6). ■

Proof of (ii)

Proof. Substituting 1
1−δ

for σ, equation (2.6) reduces to:

V
1

1−δ

(
1 − δ

δ

) ArL

w
1

1−δ
c

+ w
1
α

− 1
1−δ

c

A
1
α
c

(wc − Ar)

 =

Bc

1
1−δ Hc

(
1 +

(
τwc

κAr

)− 1
1−δ
)

+
Br

1
1−δ Hr(τ− 1

1−δ + ( wc

κAr
)− 1

1−δ )
κ

1
1−δ

Subtracting the RHS from the LHS yields:

(
BrAr

) 1
1−δ
(

Ψ − Hr

)
w

− 1
1−δ

c︸ ︷︷ ︸
1

+
(

1 − δ

δ

)
V

1
1−δ

A
1
α
c

w
1
α

− 1
1−δ

c (wc − Ar)︸ ︷︷ ︸
2

+
(

−HcBc

1
1−δ − Hr

(
Br

τκ

) 1
1−δ

)
︸ ︷︷ ︸

3

= 0

Define the resulting LHS as a function f̃ : R++ → R. Note that f̃ is a special case of f from
the proof of (i) above. Therefore, it follows that f̃ is continuous over its entire domain and:

lim
wc→0+

f̃ = −∞

lim
wc→∞

f̃ = ∞

so Bolzano’s intermediate value theorem holds and there exist one or more wc = w∗
c , such

that f̃(wc) = 0.
Let f̃i be the component of f̃ labelled above as i ∈ {1, 2, 3}, with Ψ and ζ defined the

same as in the proof of (i). Taking the first derivative of each component with respect to wc
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reveals:

df̃1

dwc

= −
( 1

1 − δ

)
︸ ︷︷ ︸

<0

(BrAr)
1

1−δ︸ ︷︷ ︸
>0

(Ψ − Hr)︸ ︷︷ ︸
<0

w
−
(

2−δ
1−δ

)
c > 0 ∀ wc ∈ R++

df̃2

dwc

= ζ


(1 + α

α
− 1

1 − δ

)
︸ ︷︷ ︸

>0

wγ1
c +

( 1
1 − δ

− 1
α

)
︸ ︷︷ ︸

>0

wγ2
c

 > 0 ∀ wc ∈ R++

df̃3

dwc

= 0 ∀ wc ∈ R++

where γ1 ≡ (1+α)(1−δ)−α(2−δ)
α(1−δ) and γ2 ≡ (1−δ)−α(2−δ)

α(1−δ) . Since f̃ is linear in its components f̃1, f̃2,
and f̃3, it follows that df̃

dwc
> 0 ∀ wc ∈ R++. As such, f̃ is strictly monotone increasing and

so f̃ can equal nought no more than once, which in turn implies the value of wc = w∗
c where

f̃(w∗
c ) = 0 must be unique. ■

In Figure A.1, I sketch generic forms the function f can take under Lemma 1(i) and (ii).
Figure A.1a shows that although solutions can exist, under (i) none of these solutions are
guaranteed to be unique. Under 1(ii), a generic form of which is sketched in Figure A.1b, a
solution is guaranteed to exist and will be unique.

A.4 Proof of Lemma 2

Proof. As I show in Online Appendix A.2, Lc(c, c), Lc(r, c), and Lr(r, r) can be expressed as
functions of wc in equilibrium (equations (A.25), (A.29), and (A.30), respectively). Given
equation (A.25) implies Lc(c, c) is positive for all positive values of the urban wage, for the
spatial equilibrium to be regular, it must be that Lc(c, c) < L, with the difference L − Lc(c, c)
divided between commuters and rural worker types, i.e. Lc(r, c) > 0 and Lr(r, r) > 0.

Conditions for Lc(c, c) < L. Rewriting equation (A.25) yields:

Lc(c, c) = Bc

1
1−δ Hcw

δ
1−δ
c

(1 − δ)
(

1 + ( wcτ
κAr

)1−σ

) δ
1−δ

V
1

1−δ

=
(

wσ−1
c +

(
κAr

τ

)σ−1
) δ

(σ−1)(1−δ) ( Hc

1 − δ

)(
Bc

V

) 1
1−δ

Imposing Lc(c, c) < L and solving for wc reveals an upper bound on wc to ensure that the
entire region’s population does not live and work in the city:

wc <

(
Ωσ−1 −

(
κAr

τ

)σ−1
) 1

σ−1

(A.32)
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Figure A.1: Existence and Uniqueness of Solutions under Lemma 1

f(wc)

wc

w∗
c1

w∗
c2

w∗
c3

w∗
c4

w∗
c5

−∞

+∞

Multiple solutions
can exist

(a) Existence of solution(s) under Lemma 1(i)

f(wc)

wcw∗
c

−∞

+∞
Unique solution

(b) Unique solution under Lemma 1(ii)

Notes: These figures sketch generic forms the function f (i.e., the LHS of Equation 2.6 subtracted from the
RHS of 2.6) can take under the restrictions in Lemma 1(i) and (ii). A solution to equation (2.6) is a value of
w∗

c such that f(wc) = 0. The wc-axis represents the strictly positive wages wc ∈ R++ earned by workers in
the city, while the y-axis represents the values f can take on when evaluated at wc, f(wc) ∈ R. The arrows in
the bottom left and top right indicate the behaviour of f as wc approaches zero from the right and positive
infinity, respectively. Under Lemma 1(i), solutions to equation (2.6) can exist, but are not guaranteed to
exist, while under (ii) a solution exists and is unique.

where Ω ≡
(

(1 − δ) L/Hc

) 1−δ
δ
(

V /Bc

) 1
δ

. Since we restrict our attention only to positive

values of w∗
c , it must be the case that

(
Ωσ−1 − (κAr/τ)σ−1

) 1
σ−1

> 0, which is true only if the
total region’s population is sufficiently large:

L >
(

Hc

1 − δ

)(
κAr

τ

) δ
1−δ

(
Bc

V

) 1
1−δ

This is condition (2.8) in in Lemma 2.

Conditions for Lr(r, r) > 0. Imposing the restriction that equation (A.30) must be
greater than zero reveals:

wc < AcL
α (A.33)

Then, upper bound on wc for both Lc(c, c) and Lr(r, r) to be positive in equilibrium depends
on the size of Ac. There are two cases:
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(i) Case #1: If

Ac < L
−α

(
Ωσ−1 −

(
κAr

τ

)σ−1
) 1

σ−1

then wc is bounded above by AcL
α

(ii) Case #2: If

Ac ≥ L
−α

(
Ωσ−1 −

(
κAr

τ

)σ−1
) 1

σ−1

then wc is bounded above by
(

Ωσ−1 −
(

κAr

τ

)σ−1
) 1

σ−1

Conditions for Lc(r, c) > 0. Substituting equation A.25 into equation A.29 reveals:

Lc(r, c) =
(

wc

Ac

) 1
α

−
(

wσ−1
c +

(
κAr

τ

)σ−1
) δ

(σ−1)(1−δ) ( Hc

1 − δ

)(
Bc

V

) 1
1−δ

(A.34)

Equation (A.34) is continuous for all w∗
c ∈ R++, but unlike the equilibrium equation for

Lr(r, r), equation (A.34) is nonlinear in wc, so there is not (necessarily) a unique set of bounds
on w∗

c which ensures Lc(r, c) > 0. However, we require only that such a set of wc exists where
Lc(r, c)(wc) > 0 that falls within the bounds of where Lc(c, c) > 0 and Lr(r, r) > 0 to identify
the values of wc for which a regular spatial equilibrium can exist. As such, we can study the
behaviour of equation (A.34) at the bounds on wc discussed above and again apply Bolzano’s
intermediate value theorem to show at least one set can exist under certain assumptions.

Given we are assuming that the equilibrium wage can only be strictly positive (i.e.,
w∗

c > 0), we first analyse the limit of Lc(r, c) as it approaches nought from the right:

lim
wc→0+

Lc(r, c) = −
(

κAr

τ

) δ
1−δ

(
Hc

1 − δ

)(
Bc

V

) 1
1−δ

< 0

Since the lower limit is less than zero, if the upper limit is greater than zero, Bolzano’s
intermediate value theorem tells us there exists at least one point wc at which Lc(r, c)(wc) = 0,
implying the set of values greater than this point and less than the upper bound is a set where
Lc(r, c) > 0. Recall there are two upper bounds on wc under which both Lc(c, c) > 0 and
Lr(r, r) > 0 depending on the relative size of Ac described above. Thus, we must evaluate
both cases to check the conditions under which Lc(r, c) > 0 as well.

(i) Case #1: AcL
α is the upper bound and evaluating the limit of Lc(r, c) as wc approaches

AcL
α reveals:

lim
wc→AcL

α
Lc(r, c) = L −

(
(AcL

α)σ−1 +
(

κAr

τ

)σ−1
) δ

(σ−1)(1−δ) ( Hc

1 − δ

)(
Bc

V

) 1
1−δ
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This limit is greater than zero if

Ac < L
−α

(
Ωσ−1 −

(
κAr

τ

)σ−1
) 1

σ−1

which is satisfied under the initial assumption given that it is the initial assumption.

(ii) Case #2:
(

Ωσ−1 −
(

κAr

τ

)σ−1
) 1

σ−1

is the upper bound and evaluating the limit of

Lc(r, c) as wc approaches
(

Ωσ−1 −
(

κAr

τ

)σ−1
) 1

σ−1

reveals:

lim
wc→ξ

Lc(r, c) = A
− 1

α
c

(
Ωσ−1 −

(
κAr

τ

)σ−1
) 1

α(σ−1 )

− Ω
δ

1−δ

(
Hc

1 − δ

)(
Bc

V

) 1
1−δ

where ξ =
(

Ωσ−1 −
(

κAr

τ

)σ−1
) 1

σ−1

. This limit is greater than zero if

Ac < L
−α

(
Ωσ−1 −

(
κAr

τ

)σ−1
) 1

σ−1

which contradicts the initial assumption.

Given that case #2 results in a contradiction, only under the assumption in case #1 that

Ac < L
−α

(
Ωσ−1 −

(
κAr

τ

)σ−1
) 1

σ−1

ensures satisfaction of Bolzano’s intermediate value theorem. The above is condition (2.9)
in Lemma 2. Bolzano’s intermediate value theorem then implies the existence of a set
W̃ comprised of urban wages w̃c ∈ (0, AcL

α) at which Lc(r, c)(w̃c) = 0. Denoting the
supremum of this set sup W̃ and noting that Lc(r, c) > 0 for any wc > sup W̃ , define a set
S = (sup W̃ , AcL

α). It follows for any wc ∈ S, the values of Lc(c, c), Lc(r, c), and Lr(r, r) are
all strictly positive in equilibrium, implying all worker types exist in equilibrium. ■

In Figure A.2, I sketch the location of set S in (wc, f(wc))-space. Important thresholds in
the proof on the wc-axis are demarcated by dashed lines. These thresholds delineate zones
along the wc-axis, within which result in different sizes for the various worker types, which I
record below the horizontal axis in each zone. The set S, laying between sup W̃ and AcL

α

exclusive, is the only zone for which all worker types are strictly positive.
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Figure A.2: Existence of the Set S under Lemma 2

f(wc)

wc0

sup W̃ AcL
α

(
Ωσ−1 −

(
κAr

τ

)σ−1
) 1

σ−1

Lc(c, c) > 0
Lc(r, c) ≥ 0
Lr(r, r) > 0

Lc(c, c) > 0
Lc(r, c) > 0
Lr(r, r) > 0

Lc(c, c) > 0
Lc(r, c) > 0
Lr(r, r) = 0

Lc(c, c) > 0
Lc(r, c) = 0
Lr(r, r) = 0

S

Notes: This figure identifies boundaries and the set of interest, S, that arise under the conditions set forth
in Lemma 2. The wc-axis represents the strictly positive wages wc ∈ R++ earned by workers in the city,
while the y-axis represents the values f can take on when evaluated at wc, f(wc) ∈ R. The important
thresholds along the wc-axis are labelled with dashed lines, which induce the formation of four “zones” along
the horizontal axis. The existence of the various populations are specified below the horizontal axis. The
only zone in which all worker types exist is the set S.
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A.5 Sketch of Proposition 1

Figure A.3: Existence and Uniqueness of an Equilibrium under Proposition 1

f(wc)

wc0

sup W̃ AcL
α

S

−∞

+∞

w∗
c

Unique equilibrium
f crosses wc-axis

once under
Lemma 1(ii)

S exists under
Lemma 2

Notes: This figure illustrates what a unique equilibrium might look like under Proposition 1, which assumes
Lemmas 1(ii) and 2 and that the unique solution to 2.6 guaranteed to exist under 1(ii) is an element of the
set S from Lemma 2. Define the function f as the LHS of Equation 2.6 subtracted from the RHS of 2.6,
where a solution to 2.6 is defined as a horizontal axis crossing point of f . The (horizontal) wc-axis represents
the strictly positive wages wc ∈ R++ earned by workers in the city, while the (vertical) f((wc)-axis represents
the values f can take on when evaluated at wc, f(wc) ∈ R. The arrows in the bottom left and top right
indicate the behaviour of f as wc approaches zero from the right and positive infinity, respectively.

A.6 Hat Algebra about the Unique Equilibrium

A.6.1 Log-linearisation

Taking the natural log of both sides of equation (2.6) setting σ = 1
1−δ

yields:

ln
(

ArL +
(

wc

Ac

) 1
α

(wc − Ar)
)

= (A.35)

ln
(

δ

1 − δ

)
−
( 1

1 − δ

)
ln(V )

+ ln

B
1

1−δ
c Hc

(
w

1
1−δ
c +

(
κAr

τ

) 1
1−δ
)

+ B
1

1−δ
r Hr

κ
1

1−δ

((
wc

τ

) 1
1−δ

+ (κAr)
1

1−δ

)
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Using the system of equations (A.6) through (A.19) that summarise this model, certain
components of equation A.35 can be reexpressed as follows:

ArL +
(

wc

Ac

) 1
α

(wc − Ar) = Yr + Yc (A.36)

B
1

1−δ
c Hc

(
w

1
1−δ
c +

(
κAr

τ

) 1
1−δ
)

+ B
1

1−δ
r Hr

κ
1

1−δ

((
wc

τ

) 1
1−δ

+ (κAr)
1

1−δ

)
(A.37)

=
(

1 − δ

δ

)
V

1
1−δ

(
Xc + Xr

)

Additionally, applying similar algebraic transformations in the derivation of equation (A.28),
equilibrium total demand for the urban and rural good can be expressed:

Xc =
(

δ

1 − δ

)(
wc

V

) 1
1−δ

B
1

1−δ
c Hc + B

1
1−δ
r Hr

(κτ)
1

1−δ

 (A.38)

Xr =
(

δ

1 − δ

)(
wc

V

) 1
1−δ

B
1

1−δ
c Hrκ

1
1−δ

τ
1

1−δ

+ B
1

1−δ
r Hr

 (A.39)

Finally, via equations (A.25) and (A.27) respectively, the products B
1

1−δ
c Hc and B

1
1−δ
r Hr can

be written in equilibrium as:

B
1

1−δ
c Hc = (1 − δ)P

δ
1−δ

c V
1

1−δ

w
δ

1−δ
c

Lc(c, c) (A.40)

B
1

1−δ
r Hr = (1 − δ)κ

δ
1−δ P

δ
1−δ

r V
1

1−δ

w
δ

1−δ
c

(
Lr(r, r) + Lc(r, c)

)
(A.41)
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Let LAc = ∂L/∂Ac. Totally differentiating equation (A.35) and substituting equations (A.36)
through (A.41) where applicable reveals:
(

(1+α
α

)Yc − ArLc

Yc + Yr

)
ŵc −

( 1
α
)
(
Yc − ArLc

)
− AcArLAc

Yc + Yr

 Âc +
(

ArLc + A2
rLAr

Yc + Yr

)
Âr

+
(

BcArLBc

Yc + Yr

)
B̂c +

(
BrArLBr

Yc + Yr

)
B̂r =

( ( 1
1−δ

)Xc

Xc + Xr

)
ŵc +

( ( 1
1−δ

)Xr

Xc + Xr

)
Âr

−
( 1

1 − δ

)
V̂ +

δ
((

1 + (τpr)− 1
1−δ

)
/P

− δ
1−δ

c

)
wcLc(c, c)

Xc + Xr

(( 1
1 − δ

)
B̂c + Ĥc

)

+

δ
((

τ− 1
1−δ + p

− 1
1−δ

r

)
/P

− δ
1−δ

r

)
wr

(
Lr(r, r) + Lc(r, c)

)
Xc + Xr

(( 1
1 − δ

)
B̂r + Ĥr

)

+


(

δ
1−δ

)((
(τpr)− 1

1−δ /P
− δ

1−δ
c

)
wcLc(c, c) −

(
τ− 1

1−δ /P
− δ

1−δ
r

)
wr

(
Lr(r, r) + Lc(r, c)

))
Xc + Xr

 κ̂

−


(

δ
1−δ

)((
(τpr)− 1

1−δ /P
− δ

1−δ
c

)
wcLc(c, c) +

(
τ− 1

1−δ /P
− δ

1−δ
r

)
wr

(
Lr(r, r) + Lc(r, c)

))
Xc + Xr

 τ̂

(A.42)

where x̂ = dx
x

for x = {wc, Ac, Ar, Bc, Br, Hc, Hr, κ, τ, V }, with x̂ denoting a (small) pro-
portional change in x á la the familiar Jones (1965) “hat algebra.” By equation (2.5), in
equilibrium total demand for the good produced in i but consumed in i′ ̸= i, denoted Xii′ ,
can be written as:

Xrc = δ
(

(τpr)− 1
1−δ /P

− δ
1−δ

c

)
wcLc(c, c) (A.43)

Xcr = δ
(

τ− 1
1−δ /P

− δ
1−δ

r

)
wr

(
Lr(r, r) + Lc(r, c)

)
(A.44)

Similarly, equilibrium total demand for the good produced and consumed in i, denoted Xii,
can be expressed:

Xcc = δ
(

1/P
− δ

1−δ
c

)
wcLc(c, c) (A.45)

Xrr = δ
(

p
− 1

1−δ
r /P

− δ
1−δ

r

)
wr

(
Lr(r, r) + Lc(r, c)

)
(A.46)

Since in equilibrium Yc + Yr = Xc + Xr, multiplying both sides of equation (A.42) (Yc + Yr),
substituting equations (A.43) through (A.46) where applicable, substituting Yc for Xc in the
expression multiplying ŵc on the right hand side given Xc = Yc in equilibrium, and solving
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for ŵc yields:

ŵc =

( 1
α
)(AcL

α
c − Ar)Lc − βLAc

ArL((
1−δ(1+α)

α(1−δ)

)
AcLα

c − Ar

)
Lc

 Âc +


(

( 1
1−δ

)Lr − Lc − βLAr
ArL

)
Ar((

1−δ(1+α)
α(1−δ)

)
AcLα

c − Ar

)
Lc

 Âr

+

( 1
1−δ

)(Xcc + Xrc) − βLBc
ArL((

1−δ(1+α)
α(1−δ)

)
AcLα

c − Ar

)
Lc

 B̂c +

( 1
1−δ

)(Xcr + Xrr) − βLBr
ArL((

1−δ(1+α)
α(1−δ)

)
AcLα

c − Ar

)
Lc

 B̂r

+

 Xcc + Xrc((
1−δ(1+α)

α(1−δ)

)
AcLα

c − Ar

)
Lc

 Ĥc +

 Xcr + Xrr((
1−δ(1+α)

α(1−δ)

)
AcLα

c − Ar

)
Lc

 Ĥr

+

 ( 1
1−δ

)(Xrc − Xcr)((
1−δ(1+α)

α(1−δ)

)
AcLα

c − Ar

)
Lc

 κ̂ +

 ( 1
1−δ

)(Xrc + Xcr)(
Ar −

(
1−δ(1+α)

α(1−δ)

)
AcLα

c

)
Lc

 τ̂

+

 ( 1
1−δ

)(Yc + Yr)(
Ar −

(
1−δ(1+α)

α(1−δ)

)
AcLα

c

)
Lc

 V̂

=βwcAcÂc + βwcArÂr + βwcBcB̂c + βwcBrB̂r + βwcHcĤc + βwcHrĤr

+ βwcκκ̂ + βwcτ τ̂ + βwcV V̂
(A.47)

where βwcx and βLx are the elasticities of the urban wage and region’s population with respect
to exogenous parameters x = {τ, κ, V , Bi, Ai, Hi} for i ∈ {c, r}.

Applying logarithmic transformations to equations (A.25), (A.26), (A.29), and (A.30),
totally differentiating, and substituting equation (A.47) for ŵc reveals:

ŵr =βwcAcÂc + βwcArÂr + βwcBcB̂c + βwcBrB̂r + βwcHcĤc + βwcHrĤr

+ (βwcκ − 1)κ̂ + βwcτ τ̂ + βwcV V̂
(A.48)

L̂c = 1
α
(βwcAc − 1)Âc + 1

α
βwcArÂr + 1

α
βwcBcB̂c + 1

α
βwcBrB̂r + 1

α
βwcHcĤc

+ 1
α
βwcHrĤr + 1

α
βwcκκ̂ + 1

α
βwcτ τ̂ + 1

α
βwcV V̂

(A.49)
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L̂c(c, c) =
( δ

1 − δ

)
βwcAc

P
− δ

1−δ
c

 Âc +
( δ

1 − δ

)(τpr)− δ
1−δ + βwcAr

P
− δ

1−δ
c

 Âr

+
( 1

1 − δ

)1 + δβwcBc

P
− δ

1−δ
c

 B̂c +
( δ

1 − δ

)
βwcBr

P
− δ

1−δ
c

 B̂r

+
1 +

(
δ

1 − δ

)
βwcHc

P
− δ

1−δ
c

 Ĥc +
( δ

1 − δ

)
βwcHr

P
− δ

1−δ
c

 Ĥr

+
( δ

1 − δ

)(τpr)− δ
1−δ + βwcκ

P
− δ

1−δ
c

 κ̂ +
( δ

1 − δ

)βwcτ − (τpr)− δ
1−δ

P
− δ

1−δ
c

 τ̂

+
( 1

1 − δ

) δβwcV

P
− δ

1−δ
c

− 1
 V̂

(A.50)

L̂c(r, c) =


(
1 − µLc

cc ( δ
1−δ

)( 1
Pc

)− δ
1−δ

)
βwcAc − 1

αµLc
rc

 Âc

+


(
1 − µLc

cc ( δ
1−δ

)( 1
Pc

)− δ
1−δ

)
βwcAr − µLc

cc ( δ
1−δ

)( τpr

Pc
)− δ

1−δ

αµLc
rc

 Âr

+


(
1 − µLc

cc ( δ
1−δ

)( 1
Pc

)− δ
1−δ

)
βwcBc − µLc

cc ( 1
1−δ

)
αµLc

rc

 B̂c

+


(
1 − µLc

cc ( δ
1−δ

)( 1
Pc

)− δ
1−δ

)
βwcBr

αµLc
rc

 B̂r

+


(
1 − µLc

cc ( δ
1−δ

)( 1
Pc

)− δ
1−δ

)
βwcHc − µLc

cc

αµLc
rc

 Ĥc

+


(
1 − µLc

cc ( δ
1−δ

)( 1
Pc

)− δ
1−δ

)
βwcHr

αµLc
rc

 Ĥr

+


(
1 − µLc

cc ( δ
1−δ

)( 1
Pc

)− δ
1−δ

)
βwcκ − µLc

cc ( δ
1−δ

)( τpr

Pc
)− δ

1−δ

αµLc
rc

 κ̂

+


(
1 − µLc

cc ( δ
1−δ

)( 1
Pc

)− δ
1−δ

)
βwcτ + µLc

cc ( δ
1−δ

)( τpr

Pc
)− δ

1−δ

αµLc
rc

 τ̂

+


(
1 − µLc

cc ( δ
1−δ

)( 1
Pc

)− δ
1−δ

)
βwcV − µLc

cc ( 1
1−δ

)
αµLc

rc

 V̂

(A.51)
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L̂r = L̂r(r, r) =
[

βLAc
+ µc(1 − 1

α
βwcAc)

µr

]
︸ ︷︷ ︸

βLrAc

Âc +
[

αβLAr
− µcβwcAr

αµr

]
Âr

+
[

αβLBc
− µcβwcBc

αµr

]
B̂c +

[
αβLBr

− µcβwcBr

αµr

]
B̂r +

[
−µcβwcHc

αµr

]
Ĥc

+
[

−µcβwcHr

αµr

]
Ĥr +

[
−µcβwcκ

αµr

]
κ̂ +

[
−µcβwcτ

αµr

]
τ̂ +

[
−µcβwcV

αµr

]
V̂

(A.52)

where the various µ represent labour shares, specifically:

µLc
cc = Lc(c, c)

Lc

µLc
rc = Lc(r, c)

Lc

µc = Lc

L

µr = Lr

L

A.6.2 Deriving the Reduced-Form Relationship of Interest (Equation 2.8)

Isolating the parameter βwcAc in equation (A.47) and substituting η = (1+α)/α−1/(1−δ),
we can rewrite βwcAc as:

βwcAc =
(µc

α
)AcL

α
c −

(µc+αβ
LAc

µc

)
Ar

µc(ηAcLα
c − Ar)

Substituting the above into βLrAc from equation (A.52) and performing algebraic manipulation
yields:

βLrAc =
βLAc

µr

+ µc

µr

(
1 − βwcAc

α

)

=
βLAc

µr

+ µc

µr

1 − 1
α

(µc

α
)AcL

α
c −

(µc+αβ
LAc

µc

)
Ar

µc(ηAcLα
c − Ar)




=
(1/(α2η) − 1)µc − βLAc

µr


(

1−α
α2

) ( (1+α)µc+αβ
LAc

(1/(α2η)−1)µc−β
LAc

)
− (AcL

α
c /Ar)

(AcLα
c /Ar) − η−1


=Θ1

[
Θ2 − (AcL

α
c /Ar)

(AcLα
c /Ar) − Θ3

]
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where again

Θ1 =
(1/(α2η) − 1)µc − βLAc

µr

Θ2 =
(1 − α

α2

)( (1 + α)µc + αβLAc

(1/(α2η) − 1)µc − βLAc

)

Θ3 = 1
η

A.7 Proof of Proposition 2

Proof. The assumptions under Proposition 1 and the assumption on the size of βLAc
ensure

Θ1, Θ2, and Θ3 are strictly positive in equilibrium.

Conditions for Θ1 > 0. For Θ1 to be strictly positive, we require 1) that (1/(α2η) − 1) > 0
and 2) that βLAc

< (1/(α2η) − 1)µc. The former is ensured by the assumption that σ > 1.
The product α2η may be expressed as:

α2η = α2
(1 + α

α
− 1

1 − δ

)
= α2

(1 + α

α
− σ

)
= α (1 + α − ασ)

Thus, it follows that:

(1/(α2η) − 1) > 0 ⇐⇒ 1/(α2η) > 1

⇐⇒ 1
α

> 1 + α − ασ

⇐⇒ σ > 1

which holds by my initial assumption on σ. The latter is guaranteed by βLAc
< (1/(α2η)−1)µc.

Therefore, Θ1 > 0.

Conditions for Θ2 > 0. For Θ2, we require that 1) α < 1, 2) (1/(α2η) − 1) > 0, and 3)
βLAc

< (1/(α2η) − 1)µc. The first requirement is satisfied by my initial assumption on α and
the other two requirements are satisfied by proof of Θ > 0.

Conditions for Θ3 > 0. For Θ3 to be strictly positive, it must be that η > 0:

η =
(1 + α

α
− 1

1 − δ

)
> 0 ⇐⇒ 1 + α

α
>

1
1 − δ
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which is true by assumption in Proposition 1. Assuming that AcL
α
c /Ar > max{Θ2, Θ3}, it

follows that:

βLrAc = Θ1︸︷︷︸
>0


(

Θ2 − AcL
α
c

Ar

)
︸ ︷︷ ︸

<0

/(
AcL

α
c

Ar

− Θ3

)
︸ ︷︷ ︸

>0

 < 0

■

A.8 Back of the Envelope Proposition 2 Calibration

To get a rough feel for the sizes of the bounds in Proposition 2, I calibrate exogenous
parameters in the model using external data, values in the literature, and the structural
requirements set forth in Proposition 1.

Preferences and Agglomeration (δ, σ, and α). The Bureau of Labor Statistics (BLS)
publish annual expenditure breakdowns of the average American household in the Consump-
tion Expenditure (CE) Survey (BLS, 2021). Dividing the average annual expenditure on
shelter (i.e., mortgage payments and rents in the CE) by average annual after-tax income, I
plot the percent of household income going towards housing from 2013 to 2019 in Figure A.4.
American households spend approximately 20% of their after-tax income on housing each
year. Taking this fact to this model, I calibrate 1 − δ = 0.2. By Lemma 1(ii), 1/(1 − δ) = σ,
implying if 1 − δ = 0.2, σ = 5. An elasticity of substitution equal to 5 lands very close to
calibrations common in the spatial literature. For instance Allen and Arkolakis (2014) and
Redding (2016) calibrate σ = 4 in their quantitative spatial models while most numerical
core-periphery analyses in Fujita, Krugman, and Venables (1999) set σ = 5. Lemma 1(ii)
also requires that σ ∈

(
1
α
, 1+α

α

)
. Thus, if σ = 5, α ∈ (0.2, 0.25). Most of the literature on

agglomeration spillovers, such as Rosenthal and Strange (2004), implies α is small, so I choose
a value of α close to the lower bound, say α = 0.21.

Urban Population Share (µc). The Bureau of Economic Analysis (BEA) publish annual
county population estimates (BEA, 2021). By first grouping counties into “rural” and “urban”
classifications based upon their Rural-Urban Continuum Code (RUCC) designated by the
United States Department of Agriculture (USDA) Economic Research Service (ERS) (ERS,
2020), I aggregate the population of US residents living in urban counties and dividing that
value by the total US population, which yields the US urban population share. I plot the
evolution of this share, as well as the share of US residents living in rural counties, from
2013 to 2019 in Figure A.5. Over this period of observation, approximately 85% of the US
population resides in a county designated as “urban.” As such, I set µc = 0.85.

Urban TFP Extra-Regional In-Migration Elasticity (βLAc
). Hornbeck and Moretti

(2021) present a method for estimating the number of workers moving to a city in response to
local manufacturing TFP growth. Using data on TFP growth in cities around the U.S. from
1980 to 1990, they show how their estimation method can estimate the number of workers
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Figure A.4: Average Household Housing Expenditure Share, 2013-2019

Notes: This figure plots the annual mean share of household after-tax income spent on housing (mortgages
or rent) in the U.S. from 2013 to 2019. The data are sourced from the BLS Consumer Expenditure Survey
(BLS, 2021).

moving from other cities in the U.S. from 1980 to 2000 directly in response to this TFP
growth. They use three cities as examples: Houston, San Jose, and Cincinnati. I use the
results of these cities in combination with initial employment data from the 1980 Quarterly
Census of Employment and Wages (QCEW) publicly available through the BLS to derive a
ballpark calibration for βLAc

.

Houston. In response to its 2.4% TFP growth, Hornbeck and Moretti (2021) estimate
that, on average, 291 workers moved from another city in the U.S. to Houston. Given there
are 193 Metropolitan Statistical Areas (MSAs) in their sample, multiplying this amount by
the city average, the total in-migration to Houston was roughly 56,163 workers from 1980
to 2000. According to the QCEW, in January of 1980, 1,172,259 people were employed in
Houston, implying local employment grew 4.7%. It follows that:

βHOU
LAc

= ∂L

∂Ac

Ac

L
= 4.7%

2.4% = 2.0
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Figure A.5: Urban and Rural U.S. Employment Shares, 2013-2019

Notes: This figure plots the annual urban and rural employment shares in the U.S. from 2013 to 2019.
The “urban” employment total is the number of employees reported by BEA (2021) as working in a county
designated as urban by ERS (2020), while the rural employment total is the number of employees working in
a rural (nonurban) county. Dividing these totals by the total U.S. workforce count for each year yields the
series plotted above.

San Jose. On account of 16.4% manufacturing TFP growth, San Jose saw 272,709 new
workers move to the city (= 1,413 new workers from other cities on average * 193 MSAs).
The initial 1980 QCEW employment level was 579,752, implying the San Jose employment
grew 47% from 1980 to 2000 on account of the TFP shock. Thus:

βSJ
LAc

= ∂L

∂Ac

Ac

L
= 47.0%

16.4% = 2.9

Cincinnati. Cincinnati’s 2.0% manufacturing TFP growth stimulated 16,212 workers
to move from elsewhere (= average of 84 workers coming from other cities * 193 MSAs).
Since the initial 1980 QCEW employment count was 501,985, TFP growth resulted in 3.2%
employment growth via in-migration. Therefore:

βCIN
LAc

= ∂L

∂Ac

Ac

L
= 3.2%

2.0% = 1.6
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Table A.1: Proposition 2 Calibration Parameter Values

Parameter Source Value Comments

Goods
expenditure share

BLS (2021) δ = 0.8 Similar to other quantitative spatial model
calibration exercises. For instance, Redding
(2016) sets δ = 0.75.

Goods elasticity
of substitution

Lemma 1(ii)
via BLS (2021)

σ = 5.0 Consistent with σ selected in Allen and Arko-
lakis (2014), Redding (2016), and Fujita,
Krugman, and Venables (1999).

Agglomeration
externality

Lemma 1(ii)
via BLS (2021)

α = 0.21 Lower end of the range permitted by Lemma
1(ii).

Urban labour
share

BEA (2021);
ERS (2020)

µc = 0.85 Urban/rural designation arising from county-
level RUCC groupings.

Urban TFP
Elasticity of
In-Migration

Hornbeck and
Moretti (2021)

βLAc
= 2.0 Median elasticity between Houston, San Jose,

and Cincinnati identified by Hornbeck and
Moretti (2021).

These elasticities imply a sensible calibration would be in the neighbourhood of two, so I
choose βLAc

= 2.

Calibrated Bounds (Θ2 and Θ3). My choice of parameter values based upon the data,
literature, and convention are summarised in Table A.1. Substituting these values into the
inequality (2.11) in Proposition 2’s reveals (2.11) is satisfied under these calibrated values:

2.0︸︷︷︸
=β

LAc

< 24.45︸ ︷︷ ︸
=(1/(α2η)−1)µc

Substituting the calibrated values into the equations for Θ2 and Θ3 yields:

Θ2 = 1.16
Θ3 = 1.31

Given Θ3 > Θ2, the binding constraint is that (AcL
α
c /Ar) > Θ3. Thus, for Proposition 2 to

hold under this parameter regime, the marginal productivity of labour ratio must be greater
than 1.31, meaning a worker in the city must be no less than 31% more productive in the
city than in the rural town.

Moretti (2011) finds substantial county-level manufacturing TFP heterogeneity across the
U.S., reporting that the most productive county in their sample is 2.9 times more productive
than the least productive county, giving weight to the possibility that the gap between urban
and rural TFP may be large enough to satisfy the lower bound identified in this calibration
exercise.
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