Appendix A Model Algebra, Proofs, and Calibration

A. 1 Derivation of equation (2.2)

Type- $\left(i, i^{\prime}\right)$ workers solve:

$$
\max _{q_{c}, q_{r}, h} \quad B_{i}\left(\frac{Q_{i}}{\delta}\right)^{\delta}\left(\frac{h\left(i, i^{\prime}\right)}{1-\delta}\right)^{1-\delta} \quad \text { s.t. } \quad w\left(i, i^{\prime}\right)=p_{c i} q_{c}\left(i, i^{\prime}\right)+p_{r i} q_{r}\left(i, i^{\prime}\right)+r_{i} h\left(i, i^{\prime}\right)
$$

resulting in first order conditions (FOC):

$$
\begin{array}{ll}
{\left[q_{c}\left(i, i^{\prime}\right)\right]} & \left(\frac{\delta}{1-\delta}\right)^{1-\delta} q_{c}\left(i, i^{\prime}\right)^{-\frac{1}{\sigma}} B_{i} Q_{i}^{\frac{1-\sigma(1-\delta)}{\sigma}} h\left(i, i^{\prime}\right)^{1-\delta}-\lambda p_{c i}=0 \\
{\left[q_{r}\left(i, i^{\prime}\right)\right]} & \left(\frac{\delta}{1-\delta}\right)^{1-\delta} q_{r}\left(i, i^{\prime}\right)^{-\frac{1}{\sigma}} B_{i} Q_{i}^{\frac{1-\sigma(1-\delta)}{\sigma}} h\left(i, i^{\prime}\right)^{1-\delta}-\lambda p_{r i}=0 \\
{\left[h\left(i, i^{\prime}\right)\right]} & \left(\frac{1-\delta}{\delta}\right)^{\delta} h^{-\delta} B_{i} Q_{i}^{\delta}-\lambda r_{i}=0
\end{array}
$$

where λ is the shadow price of the wage $w\left(i, i^{\prime}\right)$. Equating the FOCs for $q_{c}\left(i, i^{\prime}\right)$ and $q_{r}\left(i, i^{\prime}\right)$ then solving for $q_{r}\left(i, i^{\prime}\right)$ reveals:

$$
\begin{equation*}
q_{r}\left(i, i^{\prime}\right)=\left(\frac{p_{r i}}{p_{c i}}\right)^{-\sigma} q_{c}\left(i, i^{\prime}\right) \tag{A.1}
\end{equation*}
$$

Equating the FOCs for $q_{c}\left(i, i^{\prime}\right)$ and $h\left(i, i^{\prime}\right)$ then solving for $h\left(i, i^{\prime}\right)$ implies:

$$
\begin{equation*}
h\left(i, i^{\prime}\right)=\left(\frac{1-\delta}{\delta}\right) \frac{p_{c i}^{-\sigma} q_{c}\left(i, i^{\prime}\right) P_{i}^{1-\sigma}}{r_{i}} \tag{A.2}
\end{equation*}
$$

where $P_{i} \equiv\left(p_{c i}^{1-\sigma}+p_{r i}^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$ is the CES price index for location i.
Given the type- $\left(i, i^{\prime}\right)$ worker's utility takes on a Cobb-Douglas form, we can express the total amount she spends on consumption goods as:

$$
p_{c i} q_{c i}+p_{r i} q_{r i}=\delta w\left(i, i^{\prime}\right)
$$

Substituting the above and (A.7) into the budget constraint and solving for $q_{c}\left(i, i^{\prime}\right)$ yields the worker's Marshallian demand for $q_{c}\left(i, i^{\prime}\right)$:

$$
\begin{equation*}
q_{c}\left(i, i^{\prime}\right)=\delta\left(\frac{p_{c i}}{P_{i}}\right)^{-\sigma} \frac{w\left(i, i^{\prime}\right)}{P_{i}} \tag{A.3}
\end{equation*}
$$

Then, substituting (A.3) into (A.1) and A.2 yields the worker's Marshallian demands for $q_{r}\left(i, i^{\prime}\right)$ and $h\left(i, i^{\prime}\right)$:

$$
\begin{equation*}
q_{r}\left(i, i^{\prime}\right)=\delta\left(\frac{p_{r i}}{P_{i}}\right)^{-\sigma} \frac{w\left(i, i^{\prime}\right)}{P_{i}} \tag{A.4}
\end{equation*}
$$

$$
\begin{equation*}
h\left(i, i^{\prime}\right)=(1-\delta) \frac{w\left(i, i^{\prime}\right)}{r_{i}} \tag{A.5}
\end{equation*}
$$

Finally, substituting equations A.3) through A.5 into the worker's utility function results in the indirect utility function equation (2.2):

$$
V\left(i, i^{\prime}\right)=\frac{B_{i} w\left(i, i^{\prime}\right)}{P_{i}^{\delta} r_{i}^{1-\delta}}
$$

A. 2 Derivation of equation (2.6)

Following the set-up in the theoretical framework, letting $p_{c} \equiv 1$, and applying the stated simplifying assumptions that $\tau_{c r}=\tau_{r c}=\tau, L_{r}(c, r)=0$, and $\kappa_{r c}=\kappa$ this model can be summarised by the following system of equations:

$$
\begin{align*}
& Y_{c}=A_{c} L_{c}^{1+\alpha} \tag{A.6}\\
& Y_{r}=A_{r} L_{r} \tag{A.7}\\
& w_{c}=A_{c} L_{c}^{\alpha} \tag{A.8}\\
& w_{r}=p_{r} A_{r} \tag{A.9}\\
& P_{c}=\left[1+\left(\tau p_{r}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}} \tag{A.10}\\
& P_{r}=\left[\tau^{1-\sigma}+p_{r}^{1-\sigma}\right]^{\frac{1}{1-\sigma}} \tag{A.11}\\
& V(c, c)=\frac{B_{c} w_{c}}{P_{c}^{\delta} r_{c}^{1-\delta}} \tag{A.12}\\
& V(r, c)=\frac{B_{r} w_{c}}{\kappa P_{r}^{\delta} r_{r}^{1-\delta}} \tag{A.13}\\
& V(r, r)=\frac{B_{r} w_{r}}{P_{r}^{\delta} r_{r}^{1-\delta}} \tag{A.14}\\
& h(c, c)=(1-\delta) \frac{w_{c}}{r_{c}} \tag{A.15}\\
& h(r, c)=(1-\delta) \frac{w_{c}}{\kappa r_{r}} \tag{A.16}\\
& h(r, r)=(1-\delta) \frac{w_{r}}{r_{r}} \tag{A.17}\\
& X_{c}=\delta\left[\frac{1}{P_{c}^{1-\sigma}}\left(w_{c} L_{c}(c, c)\right)+\frac{\tau^{-\sigma}}{P_{r}^{1-\sigma}}\left(w_{r} L_{r}(r, r)+\frac{w_{c}}{\kappa} L_{c}(r, c)\right)\right] \tag{A.18}\\
& X_{r}=\delta\left[\frac{\left(\tau p_{r}\right)^{-\sigma}}{P_{c}^{1-\sigma}}\left(w_{c} L_{c}(c, c)\right)+\frac{p_{r}^{-\sigma}}{P_{r}^{1-\sigma}}\left(w_{r} L_{r}(r, r)+\frac{w_{c}}{\kappa} L_{c}(r, c)\right)\right] \tag{A.19}
\end{align*}
$$

As per Definition 1, there are four equilibrium conditions:

1. Goods market clearing: $Y_{c}+Y_{r}=X_{c}+X_{r}$
2. Labour market clearing: $L_{c}+L_{r}=L_{c}(c, c)+L_{c}(r, c)+L_{r}(r, r)=\bar{L}$
3. Housing market clearing: $H_{c}=h(c, c) L_{c}(c, c)$ and $H_{r}=h(r, r) L_{r}(r, r)+h(r, c) L_{c}(r, c)$
4. No spatial arbitrage: $V(c, c)=V(r, c)=V(c, c)=\bar{V}$

By combining equilibrium requirements 1 through 4 with equations (A.6) through (A.19), equation (2.6) results.

Housing market clearing implies the total housing stock, which is exogenously determined, in a given location equals the total local demand for housing. Substituting equations A.15) through A.17) into equilibrium condition 3 reveal:

$$
\begin{align*}
H_{c} & =h(c, c) L_{c}(c, c)=\frac{(1-\delta)}{r_{c}} w_{c} L_{c}(c, c) \\
& \Longrightarrow r_{c}=\frac{(1-\delta)}{H_{c}} w_{c} L_{c}(c, c) \tag{A.20}\\
H_{r} & =h(r, r) L_{r}(r, r)+h(r, c) L_{c}(r, c)=\frac{(1-\delta)}{r_{c}}\left(w_{r} L_{r}(r, r)+\frac{w_{c}}{\kappa} L_{c}(r, c)\right) \\
& \Longrightarrow r_{r}=\frac{(1-\delta)}{H_{r}}\left(w_{r} L_{r}(r, r)+\frac{w_{c}}{\kappa} L_{c}(r, c)\right) \tag{A.21}
\end{align*}
$$

Substituting equation (A.20) into equation A.12) and equation A.21) into equations A.13) and (A.14) yield:

$$
\begin{align*}
& V(c, c)=\frac{B_{c} H_{c}^{1-\delta} w_{c}^{\delta}}{(1-\delta)^{1-\delta} P_{c}^{\delta} L_{c}(c, c)^{1-\delta}} \tag{A.22}\\
& V(r, c)=\frac{B_{r} H_{r}^{1-\delta} w_{c}}{\kappa(1-\delta)^{1-\delta} P_{r}^{\delta}\left(w_{r} L_{r}(r, r)+\frac{w_{c}}{\kappa} L_{c}(r, c)\right)^{1-\delta}} \tag{A.23}\\
& V(r, r)=\frac{B_{r} H_{r}^{1-\delta} w_{r}}{(1-\delta)^{1-\delta} P_{r}^{\delta}\left(w_{r} L_{r}(r, r)+\frac{w_{c}}{\kappa} L_{c}(r, c)\right)^{1-\delta}} \tag{A.24}
\end{align*}
$$

No spatial arbitrage (equilibrium condition 4) implies that $V(c, c)=\bar{V}, V(r, r)=V(r, c)$, and $V(r, r)=V(c, c)$ hold simultaneously. The first equality between equation A.22) and \bar{V} implies:

$$
\begin{align*}
V(c, c)= & \bar{V}: \frac{B_{c} H_{c}^{1-\delta} w_{c}^{\delta}}{(1-\delta)^{1-\delta} P_{c}^{\delta} L_{c}(c, c)^{1-\delta}}=\bar{V} \\
& \Longrightarrow L_{c}(c, c)=\frac{B_{c}^{\frac{1}{1-\delta}} H_{c} w_{c}^{\frac{\delta}{1-\delta}}}{(1-\delta) P_{c}^{\frac{\delta}{1-\delta}} V^{\frac{1}{1-\delta}}} \tag{A.25}
\end{align*}
$$

The second equality between equations (A.23) and A.24 reveals:

$$
\begin{align*}
V(r, r)=V(r, c) & : \frac{B_{r} H_{r}^{1-\delta} w_{r}}{(1-\delta)^{1-\delta} P_{r}^{\delta}\left(w_{r} L_{r}(r, r)+\frac{w_{c}}{\kappa} L_{c}(r, c)\right)^{1-\delta}} \\
& =\frac{B_{r} H_{r}^{1-\delta} w_{c}}{\kappa(1-\delta)^{1-\delta} P_{r}^{\delta}\left(w_{r} L_{r}(r, r)+\frac{w_{c}}{\kappa} L_{c}(r, c)\right)^{1-\delta}} \\
\Longrightarrow & w_{r}=\frac{w_{c}}{\kappa} \tag{A.26}
\end{align*}
$$

After substituting equation A.26) into equation A.24, the third equality between A.22) into equation A.24) implies:

$$
\begin{aligned}
V(r, r)=V(c, c) & : \frac{B_{r} H_{r}^{1-\delta} w_{c}^{\delta}}{\kappa^{\delta}(1-\delta)^{1-\delta} P_{r}^{\delta}\left(L_{r}(r, r)+L_{c}(r, c)\right)^{1-\delta}} \\
& =\frac{B_{c} H_{c}^{1-\delta} w_{c}^{\delta}}{(1-\delta)^{1-\delta} P_{c}^{\delta} L_{c}(c, c)^{1-\delta}} \\
\Longrightarrow & L_{r}(r, r)+L_{c}(r, c)=\frac{B_{r}^{\frac{1}{1-\delta}} H_{r} P_{c}^{\frac{\delta}{1-\delta}}}{\kappa^{\frac{\delta}{1-\delta}} B_{c}^{\frac{1}{1-\delta}} H_{c} P_{r}^{\frac{\delta}{1-\delta}}} L_{c}(c, c)
\end{aligned}
$$

and given the result in equation (A.25), it follows the above becomes:

$$
\begin{equation*}
\Longrightarrow L_{r}(r, r)+L_{c}(r, c)=\frac{B_{r}^{\frac{1}{1-\delta}} H_{r} w_{c}^{\frac{\delta}{1-\delta}}}{(1-\delta) \kappa^{\frac{\delta}{1-\delta}} P_{r}^{\frac{\delta}{1-\delta}} V^{\frac{1}{1-\delta}}} \tag{A.27}
\end{equation*}
$$

Adding goods demand equations (A.18) and A.19) then substituting in results from equations (A.25), A.26), and (A.27) as well as the price index equations A.10) and A.11), total goods demand is expressed as:

$$
\begin{align*}
X_{c}+X_{r} & =\delta\left[\left(\frac{1+\left(\tau p_{r}\right)^{-\sigma}}{P_{c}^{1-\sigma}}\right) w_{c} L_{c}(c, c)+\left(\frac{\tau^{-\sigma}+p_{r}^{-\sigma}}{P_{r}^{1-\sigma}}\right)\left(w_{r} L_{r}(r, r)+\frac{w_{c}}{\kappa} L_{c}(r, c)\right)\right] \\
& =\delta\left[\left(\frac{1+\left(\tau p_{r}\right)^{-\sigma}}{P_{c}^{1-\sigma}}\right) w_{c} L_{c}(c, c)+\left(\frac{\tau^{-\sigma}+p_{r}^{-\sigma}}{P_{r}^{1-\sigma}}\right) \frac{w_{c}}{\kappa}\left(L_{r}(r, r)+L_{c}(r, c)\right)\right] \\
& =\left(\frac{\delta}{1-\delta}\right)\left(\frac{w_{c}}{\bar{V}}\right)^{\frac{1}{1-\delta}}\left[\left(\frac{1+\left(\tau p_{r}\right)^{-\sigma}}{P_{c}^{1-\sigma}}\right) \frac{B_{c}^{\frac{1}{1-\delta}} H_{c}}{P_{c}^{\frac{\delta}{1-\delta}}}+\left(\frac{\tau^{-\sigma}+p_{r}^{-\sigma}}{P_{r}^{1-\sigma}}\right) \frac{B_{r}^{\frac{1}{1-\delta}} H_{r}}{\kappa^{\frac{1}{1-\delta}} \frac{\delta}{\frac{\delta}{1-\delta}}}\right] \\
& =\left(\frac{\delta}{1-\delta}\right)\left(\frac{w_{c}}{\bar{V}}\right)^{\frac{1}{1-\delta}}\left[\frac{\left(1+\left(\tau p_{r}\right)^{-\sigma}\right) B_{c}^{\frac{1}{1-\delta}} H_{c}}{\left(1+\left(\tau p_{r}\right)^{1-\sigma}\right)^{\frac{\sigma(1-\delta)-1}{(\sigma-1)(1-\delta)}}}+\frac{\left(\tau^{-\sigma}+p_{r}^{-\sigma}\right) B_{r}^{\frac{1}{1-\delta}} H_{r}}{\kappa^{\frac{1}{1-\delta}}\left(\tau^{1-\sigma}+p_{r}^{1-\sigma}\right)^{\frac{\sigma(1-\delta-1}{(\sigma-1)(1-\delta)}}}\right] \tag{A.28}
\end{align*}
$$

The equilibrium urban wage, equation (A.10), can be rearranged to reveal:

$$
\begin{align*}
L_{c}=L_{c}(c, c)+L_{c}(r, c) & =\left(\frac{w_{c}}{A_{c}}\right)^{\frac{1}{\alpha}} \\
\Longrightarrow L_{c}(r, c) & =\left(\frac{w_{c}}{A_{c}}\right)^{\frac{1}{\alpha}}-L_{c}(c, c) \tag{A.29}
\end{align*}
$$

Substituting this result into the labour supply equilibrium condition, condition 2, and rearranging reveals:

$$
\begin{align*}
& L_{r}(r, r)=\bar{L}-\left(\frac{w_{c}}{A_{c}}\right)^{\frac{1}{\alpha}} \\
& \Longrightarrow L_{r}=\bar{L}-\left(\frac{w_{c}}{A_{c}}\right)^{\frac{1}{\alpha}} \tag{А.30}
\end{align*}
$$

Given the above, summing equations (A.6) and (A.7) and substituting equations A.29) and (A.30) into the result, total goods supply can be expressed:

$$
\begin{align*}
Y_{c}+Y_{r} & =A_{c} L_{c}^{1+\alpha}+A_{r} L_{r} \\
& =A_{r} \bar{L}+\frac{w_{c}^{\frac{1+\alpha}{\alpha}}}{A_{c}^{\frac{1}{\alpha}}}-\frac{A_{r} w_{c}^{\frac{1}{\alpha}}}{A_{c}^{\frac{1}{\alpha}}} \tag{A.31}
\end{align*}
$$

Equating the total goods supply equation A.31) and total goods demand equation A.28) (i.e. the goods market clearing, condition 1) yields:

$$
\begin{aligned}
& A_{r} \bar{L}+\frac{w_{c}^{\frac{1+\alpha}{\alpha}}}{A_{c}^{\frac{1}{\alpha}}}-\frac{A_{r} w_{c}^{\frac{1}{\alpha}}}{A_{c}^{\frac{1}{\alpha}}}= \\
&\left(\frac{\delta}{1-\delta}\right)\left(\frac{w_{c}}{\bar{V}}\right)^{\frac{1}{1-\delta}}\left[\frac{\left(1+\left(\tau p_{r}\right)^{-\sigma}\right) B_{c}^{\frac{1}{1-\delta}} H_{c}}{\left(1+\left(\tau p_{r}\right)^{1-\sigma}\right)^{\frac{\sigma(1-\delta)-1}{(\sigma-1)(1-\delta)}}}+\frac{\left(\tau^{-\sigma}+p_{r}^{-\sigma}\right) B_{r}^{\frac{1}{1-\delta}} H_{r}}{\kappa^{\frac{1}{1-\delta}}\left(\tau^{1-\sigma}+p_{r}^{1-\sigma}\right)^{\frac{\sigma(1-\delta)-1}{(\sigma-1)(1-\delta)}}}\right]
\end{aligned}
$$

and since equations A.9 and A.26 imply $p_{r}=\frac{w_{r}}{A_{r}}=\frac{w_{c}}{\kappa A_{r}}$, it follows the above is:

$$
\begin{aligned}
A_{r} \bar{L}+ & \frac{w_{c}^{\frac{1+\alpha}{\alpha}}}{A_{c}^{\frac{1}{\alpha}}}-\frac{A_{r} w_{c}^{\frac{1}{\alpha}}}{A_{c}^{\frac{1}{\alpha}}}= \\
& \left(\frac{\delta}{1-\delta}\right)\left(\frac{w_{c}}{\bar{V}}\right)^{\frac{1}{1-\delta}}\left[\frac{\left(1+\left(\frac{\tau w_{c}}{\kappa A_{r}}\right)^{-\sigma}\right) B_{c}^{\frac{1}{1-\delta}} H_{c}}{\left(1+\left(\frac{\tau w_{c}}{\kappa A_{r}}\right)^{1-\sigma}\right)^{\frac{\sigma(1-\delta)-1}{(\sigma-1)(1-\delta)}}}+\frac{\left(\tau^{-\sigma}+\left(\frac{w_{c}}{\kappa A_{r}}\right)^{-\sigma}\right) B_{r}^{\frac{1}{1-\delta}} H_{r}}{\kappa^{\frac{1}{1-\delta}}\left(\tau^{1-\sigma}+\left(\frac{w_{c}}{\kappa A_{r}}\right)^{1-\sigma}\right)^{\frac{\sigma(1-\delta)-1}{(\sigma-1)(1-\delta)}}}\right]
\end{aligned}
$$

Multiplying both sides by $\left(\frac{1-\delta}{\delta}\right) \bar{V}^{\frac{1}{1-\delta}} w_{c}^{-\sigma}$ and some algebra reveal the equilibrium condition
equation (2.6):

$$
\begin{aligned}
\bar{V}^{\frac{1}{1-\delta}}\left(\frac{1-\delta}{\delta}\right) & {\left[\frac{A_{r} \bar{L}}{w_{c}^{\sigma}}+\frac{w_{c}^{\frac{1}{\alpha}-\sigma}}{A_{c}^{\frac{1}{\alpha}}}\left(w_{c}-A_{r}\right)\right]=} \\
& \frac{B_{c}^{\frac{1}{1-\delta}} H_{c}\left(1+\left(\frac{\tau w_{c}}{\kappa A_{r}}\right)^{-\sigma}\right)}{\left(w_{c}^{\sigma-1}+\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{\sigma(1-\delta-1}{(\sigma-1)(1-\delta)}}}+\frac{B_{r}^{\frac{1}{1-\delta}} H_{r}\left(\tau^{-\sigma}+\left(\frac{w_{c}}{\kappa A_{r}}\right)^{-\sigma}\right)}{\kappa^{\frac{1}{1-\delta}}\left(\left(\frac{w_{c}}{\tau}\right)^{\sigma-1}+\left(\kappa A_{r}\right)^{\sigma-1}\right)^{\frac{\sigma(1-\delta-1}{(\sigma-1)(1-\delta)}}}
\end{aligned}
$$

A. 3 Proof of Lemma 1

Proof of (i)

Proof. Consider equation (2.6). Subtract the right-hand-side (RHS) from the left-hand-side (LHS).

$$
\underbrace{\left[\left(\frac{1-\delta}{\delta}\right) A_{r} \bar{L} \bar{V}^{\frac{1}{1-\delta}}-\frac{B_{c}^{\frac{1}{1-\delta}} H_{c}\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma}}{\left(w_{c}^{\sigma-1}+\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{\sigma(1-\delta)-1}{(\sigma-1)(1-\delta)}}}-\frac{B_{r}^{\frac{1}{1-\delta}} H_{r}\left(\kappa A_{r}\right)^{\sigma}}{\kappa^{\frac{1}{1-\delta}}\left(\left(\frac{w_{c}}{\tau}\right)^{\sigma-1}+\left(\kappa A_{r}\right)^{\sigma-1}\right)^{\frac{\sigma(1-\delta)-1}{(\sigma-1)(1-\delta)}}}\right] w_{c}^{-\sigma}}
$$

(1)

$$
+\underbrace{\left(\frac{1-\delta}{\delta}\right) \frac{\bar{V}^{\frac{1}{1-\delta}}}{A_{c}^{\frac{1}{\alpha}}} w_{c}^{\frac{1}{\alpha}-\sigma}\left(w_{c}-A_{r}\right)}_{2}
$$

$$
+\underbrace{\left[-\frac{B_{c}^{\frac{1}{1-\delta}} H_{c}}{\left(w_{c}^{\sigma-1}+\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{\sigma(1-\delta)-1}{(\sigma-1)(1-\delta)}}}-\frac{B_{r}^{\frac{1}{1-\delta}} H_{r}}{\tau^{\sigma} \kappa^{\frac{1}{1-\delta}}\left(\left(\frac{w_{c}}{\tau}\right)^{\sigma-1}+\left(\kappa A_{r}\right)^{\sigma-1}\right)^{\frac{\sigma(1-\delta)-1}{(\sigma-1)(1-\delta)}}}\right]}_{(3)}=0
$$

Define the resulting LHS (i.e., the sum of components 1 through 3) as function $f: \mathbb{R}_{++} \rightarrow \mathbb{R}$, which is nonlinear in a single unknown $w_{c} \in \mathbb{R}_{++}$. We are interested in values of w_{c}, labelled w_{c}^{*}, at which $f\left(w_{c}^{*}\right)=0$ thereby implying equation (2.6) holds.

By inspection, f is continuous for all $w_{c} \in \mathbb{R}_{++}$. Define f_{i} as the component of f labelled above as $i \in\{1,2,3\}$, let the lower bound on H_{r} in equation (2.7) be summarised as:

$$
\Psi \equiv\left(\frac{B_{c}}{B_{r}} \frac{\kappa}{\tau}\right)^{\frac{1}{1-\delta}}\left[\left(\frac{1-\delta}{\delta}\right)\left(\frac{\bar{L}^{1-\delta}}{A_{r}^{\delta}} \frac{\bar{V}}{B_{c}} \frac{\tau}{\kappa}\right)^{\frac{1}{1-\delta}}-H_{c}\right]
$$

and set $\zeta \equiv\left(\frac{1-\delta}{\delta}\right) \frac{\bar{V}^{\frac{1}{1-\delta}}}{A_{c}^{\frac{1}{c}}}$, which is strictly positive given its components are all assumed positive. Evaluating the limit of each component of f as w_{c} approaches zero from the right,
observe:

$$
\begin{aligned}
& \lim _{w_{c} \rightarrow 0^{+}} f_{1}= \underbrace{\left(B_{r} A_{r}\right)^{\frac{1}{1-\delta}}}_{>0} \underbrace{\left(\Psi-H_{r}\right)}_{<0 \text { since } \Psi<H_{r}} * \infty=-\infty \\
& \lim _{w_{c} \rightarrow 0^{+}} f_{2}= \begin{cases}-\zeta * A_{r} * 0=0 & \text { if } \sigma<\frac{1}{\alpha} \\
-\zeta * A_{r}<0 & \text { if } \sigma=\frac{1}{\alpha} \\
-\zeta * A_{r} * \infty=-\infty & \text { if } \frac{1}{\alpha}<\sigma<\frac{1+\alpha}{\alpha}\end{cases} \\
& \lim _{w_{c} \rightarrow 0^{+}} f_{3}=-\frac{H_{c} B_{c}^{\frac{1}{1-\delta}} \tau^{\frac{\sigma(1-\delta)-1}{1-\delta}}}{\left(\kappa A_{r}\right)^{\frac{\sigma(1-\delta)-1}{1-\delta}}}-\frac{H_{r} B_{r}^{\frac{1}{1-\delta}}}{(\tau \kappa)^{\sigma} A_{r}^{\frac{\sigma(1-\delta)-1}{1-\delta}}<0}
\end{aligned}
$$

Since f is linear in f_{1}, f_{2}, and f_{3}, it follows that $\lim _{w_{c} \rightarrow 0^{+}} f=\lim _{w_{c} \rightarrow 0^{+}} f_{1}+\lim _{w_{c} \rightarrow 0^{+}} f_{2}+\lim _{w_{c} \rightarrow 0^{+}} f_{3}$. Thus:

$$
\lim _{w_{c} \rightarrow 0^{+}} f=-\infty
$$

Then, evaluating the limit of each component as w_{c} approaches positive infinity, we find:

$$
\begin{aligned}
& \lim _{w_{c} \rightarrow \infty} f_{1}=\left(B_{r} A_{r}\right)^{\frac{1}{1-\delta}}\left(\Psi-H_{r}\right) * 0=0 \\
& \lim _{w_{c} \rightarrow \infty} f_{2}= \begin{cases}\zeta * \lim _{w_{c} \rightarrow \infty} w_{c}^{\frac{1}{\alpha}-\sigma} * \lim _{w_{c} \rightarrow \infty}\left(w_{c}-A_{r}\right)=\infty & \text { if } \sigma<\frac{1}{\alpha} \\
\zeta * \lim _{w_{c} \rightarrow \infty}\left(w_{c}-A_{r}\right)=\infty & \text { if } \sigma=\frac{1}{\alpha} \\
\zeta * \lim _{w_{c} \rightarrow \infty} \frac{w_{c}-A_{r}}{w_{c}^{\sigma-\frac{1}{\alpha}}} \xlongequal{\hat{H}} \mu * \lim _{w_{c} \rightarrow \infty} \frac{w_{c}^{\frac{1+\alpha}{\alpha}-\sigma}}{\sigma-\frac{1}{\alpha}}=\infty & \text { if } \frac{1}{\alpha}<\sigma<\frac{1+\alpha}{\alpha}\end{cases} \\
& \lim _{w_{c} \rightarrow \infty} f_{3}= \begin{cases}-H_{c} B_{c}{ }^{\sigma}-H_{r}\left(\frac{B_{r}}{\tau \kappa}\right)^{\sigma}<0 & \text { if } \frac{1}{1-\delta}=\sigma \\
0 & \text { if } \frac{1}{1-\delta}<\sigma\end{cases}
\end{aligned}
$$

where $\widehat{\mathrm{H}}$ denotes application of L'Hôpital's rule. Again, linearity of f in f_{1}, f_{2}, and f_{3} implies
$\lim _{w_{c} \rightarrow \infty} f=\lim _{w_{c} \rightarrow \infty} f_{1}+\lim _{w_{c} \rightarrow \infty} f_{2}+\lim _{w_{c} \rightarrow \infty} f_{3}$, so it follows that:

$$
\lim _{w_{c} \rightarrow \infty} f=\infty
$$

Given the continuity and limit behaviour of f, Bolzano's intermediate value theorem applies and there must exist at least one $w_{c}^{*} \in \mathbb{R}_{++}$that satisfies equation (2.6).

Proof of (ii)

Proof. Substituting $\frac{1}{1-\delta}$ for σ, equation 2.6 reduces to:

$$
\begin{aligned}
\bar{V}^{\frac{1}{1-\delta}}\left(\frac{1-\delta}{\delta}\right) & {\left[\frac{A_{r} \bar{L}}{w_{c}^{\frac{1}{1-\delta}}}+\frac{w_{c}^{\frac{1}{\alpha}}-\frac{1}{1-\delta}}{A_{c}^{\frac{1}{\alpha}}}\left(w_{c}-A_{r}\right)\right]=} \\
& B_{c}^{\frac{1}{1-\delta}} H_{c}\left(1+\left(\frac{\tau w_{c}}{\kappa A_{r}}\right)^{-\frac{1}{1-\delta}}\right)+\frac{B_{r}^{\frac{1}{1-\delta}} H_{r}\left(\tau^{-\frac{1}{1-\delta}}+\left(\frac{w_{c}}{\kappa A_{r}}\right)^{-\frac{1}{1-\delta}}\right)}{\kappa^{\frac{1}{1-\delta}}}
\end{aligned}
$$

Subtracting the RHS from the LHS yields:

$$
\begin{aligned}
\underbrace{\left(B_{r} A_{r}\right)^{\frac{1}{1-\delta}}\left(\Psi-H_{r}\right) w_{c}^{-\frac{1}{1-\delta}}}_{(1)} & +\underbrace{\left(\frac{1-\delta}{\delta}\right) \frac{\bar{V}^{\frac{1}{1-\delta}}}{A_{c}^{\frac{1}{\alpha}}} w_{c}^{\frac{1}{\alpha}-\frac{1}{1-\delta}}\left(w_{c}-A_{r}\right)}_{(2)} \\
& +\underbrace{\left(-H_{c} B_{c}^{\frac{1}{1-\delta}}-H_{r}\left(\frac{B_{r}}{\tau \kappa}\right)^{\frac{1}{1-\delta}}\right)}_{(3)}=0
\end{aligned}
$$

Define the resulting LHS as a function $\tilde{f}: \mathbb{R}_{++} \rightarrow \mathbb{R}$. Note that \tilde{f} is a special case of f from the proof of (i) above. Therefore, it follows that \tilde{f} is continuous over its entire domain and:

$$
\begin{aligned}
& \lim _{w_{c} \rightarrow 0^{+}} \tilde{f}=-\infty \\
& \lim _{w_{c} \rightarrow \infty} \tilde{f}=\infty
\end{aligned}
$$

so Bolzano's intermediate value theorem holds and there exist one or more $w_{c}=w_{c}^{*}$, such that $\tilde{f}\left(w_{c}\right)=0$.

Let \tilde{f}_{i} be the component of \tilde{f} labelled above as $i \in\{1,2,3\}$, with Ψ and ζ defined the same as in the proof of (i). Taking the first derivative of each component with respect to w_{c}
reveals:

$$
\begin{aligned}
& \frac{\mathrm{d} \tilde{f}_{1}}{\mathrm{~d} w_{c}}=\underbrace{-\left(\frac{1}{1-\delta}\right)}_{<0} \underbrace{\left(B_{r} A_{r}\right)^{\frac{1}{1-\delta}}}_{>0} \underbrace{\left(\Psi-H_{r}\right)}_{<0} w_{c}^{-\left(\frac{2-\delta}{1-\delta}\right)}>0 \forall w_{c} \in \mathbb{R}_{++} \\
& \frac{\mathrm{d} \tilde{f}_{2}}{\mathrm{~d} w_{c}}=\zeta[\underbrace{\left(\frac{1+\alpha}{\alpha}-\frac{1}{1-\delta}\right)}_{>0} w_{c}^{\gamma_{1}}+\underbrace{\left(\frac{1}{1-\delta}-\frac{1}{\alpha}\right)}_{>0} w_{c}^{\gamma_{2}}]>0 \forall w_{c} \in \mathbb{R}_{++} \\
& \frac{\mathrm{d} \tilde{f}_{3}}{\mathrm{~d} w_{c}}=0 \forall w_{c} \in \mathbb{R}_{++}
\end{aligned}
$$

where $\gamma_{1} \equiv \frac{(1+\alpha)(1-\delta)-\alpha(2-\delta)}{\alpha(1-\delta)}$ and $\gamma_{2} \equiv \frac{(1-\delta)-\alpha(2-\delta)}{\alpha(1-\delta)}$. Since \tilde{f} is linear in its components $\tilde{f}_{1}, \tilde{f}_{2}$, and \widetilde{f}_{3}, it follows that $\frac{\mathrm{d} \widetilde{f}}{\mathrm{~d} w_{c}}>0 \forall w_{c} \in \mathbb{R}_{++}$. As such, \tilde{f} is strictly monotone increasing and so \tilde{f} can equal nought no more than once, which in turn implies the value of $w_{c}=w_{c}^{*}$ where $\widetilde{f}\left(w_{c}^{*}\right)=0$ must be unique.

In Figure A.1, I sketch generic forms the function f can take under Lemma $1(i)$ and (ii). Figure A.1a shows that although solutions can exist, under (i) none of these solutions are guaranteed to be unique. Under 1 (ii), a generic form of which is sketched in Figure A.1b, a solution is guaranteed to exist and will be unique.

A. 4 Proof of Lemma 2

Proof. As I show in Online Appendix A.2, $L_{c}(c, c), L_{c}(r, c)$, and $L_{r}(r, r)$ can be expressed as functions of w_{c} in equilibrium (equations A.25), A.29), and A.30), respectively). Given equation A.25) implies $L_{c}(c, c)$ is positive for all positive values of the urban wage, for the spatial equilibrium to be regular, it must be that $L_{c}(c, c)<\bar{L}$, with the difference $\bar{L}-L_{c}(c, c)$ divided between commuters and rural worker types, i.e. $L_{c}(r, c)>0$ and $L_{r}(r, r)>0$.

Conditions for $\boldsymbol{L}_{\boldsymbol{c}}(\boldsymbol{c}, \boldsymbol{c})<\overline{\boldsymbol{L}}$. Rewriting equation A.25 yields:

$$
\begin{aligned}
L_{c}(c, c) & =\frac{B_{c}^{\frac{1}{1-\delta}} H_{c} w_{c}^{\frac{\delta}{1-\delta}}}{(1-\delta)\left(1+\left(\frac{w_{c} \tau}{\kappa A_{r}}\right)^{1-\sigma}\right)^{\frac{\delta}{1-\delta}} \overline{V^{\frac{1}{1-\delta}}}} \\
& =\left(w_{c}^{\sigma-1}+\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{\delta}{(\sigma-1)(1-\delta)}}\left(\frac{H_{c}}{1-\delta}\right)\left(\frac{B_{c}}{\bar{V}}\right)^{\frac{1}{1-\delta}}
\end{aligned}
$$

Imposing $L_{c}(c, c)<\bar{L}$ and solving for w_{c} reveals an upper bound on w_{c} to ensure that the entire region's population does not live and work in the city:

$$
\begin{equation*}
w_{c}<\left(\Omega^{\sigma-1}-\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}} \tag{A.32}
\end{equation*}
$$

Figure A.1: Existence and Uniqueness of Solutions under Lemma 1

Notes: These figures sketch generic forms the function f (i.e., the LHS of Equation 2.6 subtracted from the RHS of 2.6 can take under the restrictions in Lemma $1, i$) and ($i i$). A solution to equation (2.6) is a value of w_{c}^{*} such that $f\left(w_{c}\right)=0$. The w_{c}-axis represents the strictly positive wages $w_{c} \in \mathbb{R}_{++}$earned by workers in the city, while the y-axis represents the values f can take on when evaluated at $w_{c}, f\left(w_{c}\right) \in \mathbb{R}$. The arrows in the bottom left and top right indicate the behaviour of f as w_{c} approaches zero from the right and positive infinity, respectively. Under Lemma 1(i, solutions to equation (2.6) can exist, but are not guaranteed to exist, while under (ii) a solution exists and is unique.
where $\Omega \equiv\left((1-\delta) \bar{L} / H_{c}\right)^{\frac{1-\delta}{\delta}}\left(\bar{V} / B_{c}\right)^{\frac{1}{\delta}}$. Since we restrict our attention only to positive values of w_{c}^{*}, it must be the case that $\left(\Omega^{\sigma-1}-\left(\kappa A_{r} / \tau\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}>0$, which is true only if the total region's population is sufficiently large:

$$
\bar{L}>\left(\frac{H_{c}}{1-\delta}\right)\left(\frac{\kappa A_{r}}{\tau}\right)^{\frac{\delta}{1-\delta}}\left(\frac{B_{c}}{\bar{V}}\right)^{\frac{1}{1-\delta}}
$$

This is condition (2.8) in in Lemma 2.

Conditions for $\boldsymbol{L}_{r}(\boldsymbol{r}, \boldsymbol{r})>\mathbf{0}$. Imposing the restriction that equation A.30 must be greater than zero reveals:

$$
\begin{equation*}
w_{c}<A_{c} \bar{L}^{\alpha} \tag{A.33}
\end{equation*}
$$

Then, upper bound on w_{c} for both $L_{c}(c, c)$ and $L_{r}(r, r)$ to be positive in equilibrium depends on the size of A_{c}. There are two cases:
(i) Case \#1: If

$$
A_{c}<\bar{L}^{-\alpha}\left(\Omega^{\sigma-1}-\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}
$$

then w_{c} is bounded above by $A_{c} \bar{L}^{\alpha}$
(ii) Case \#2: If

$$
A_{c} \geq \bar{L}^{-\alpha}\left(\Omega^{\sigma-1}-\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}
$$

then w_{c} is bounded above by $\left(\Omega^{\sigma-1}-\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$
Conditions for $\boldsymbol{L}_{\boldsymbol{c}}(\boldsymbol{r}, \boldsymbol{c})>\mathbf{0}$. Substituting equation A. 25 into equation A. 29 reveals:

$$
\begin{equation*}
L_{c}(r, c)=\left(\frac{w_{c}}{A_{c}}\right)^{\frac{1}{\alpha}}-\left(w_{c}^{\sigma-1}+\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{\delta}{(\sigma-1)(1-\delta)}}\left(\frac{H_{c}}{1-\delta}\right)\left(\frac{B_{c}}{\bar{V}}\right)^{\frac{1}{1-\delta}} \tag{A.34}
\end{equation*}
$$

Equation A.34 is continuous for all $w_{c}^{*} \in \mathbb{R}_{++}$, but unlike the equilibrium equation for $L_{r}(r, r)$, equation (A.34) is nonlinear in w_{c}, so there is not (necessarily) a unique set of bounds on w_{c}^{*} which ensures $L_{c}(r, c)>0$. However, we require only that such a set of w_{c} exists where $L_{c}(r, c)\left(w_{c}\right)>0$ that falls within the bounds of where $L_{c}(c, c)>0$ and $L_{r}(r, r)>0$ to identify the values of w_{c} for which a regular spatial equilibrium can exist. As such, we can study the behaviour of equation (A.34) at the bounds on w_{c} discussed above and again apply Bolzano's intermediate value theorem to show at least one set can exist under certain assumptions.

Given we are assuming that the equilibrium wage can only be strictly positive (i.e., $w_{c}^{*}>0$), we first analyse the limit of $L_{c}(r, c)$ as it approaches nought from the right:

$$
\lim _{w_{c} \rightarrow 0^{+}} L_{c}(r, c)=-\left(\frac{\kappa A_{r}}{\tau}\right)^{\frac{\delta}{1-\delta}}\left(\frac{H_{c}}{1-\delta}\right)\left(\frac{B_{c}}{\bar{V}}\right)^{\frac{1}{1-\delta}}<0
$$

Since the lower limit is less than zero, if the upper limit is greater than zero, Bolzano's intermediate value theorem tells us there exists at least one point w_{c} at which $L_{c}(r, c)\left(w_{c}\right)=0$, implying the set of values greater than this point and less than the upper bound is a set where $L_{c}(r, c)>0$. Recall there are two upper bounds on w_{c} under which both $L_{c}(c, c)>0$ and $L_{r}(r, r)>0$ depending on the relative size of A_{c} described above. Thus, we must evaluate both cases to check the conditions under which $L_{c}(r, c)>0$ as well.
(i) Case \#1: $A_{c} \bar{L}^{\alpha}$ is the upper bound and evaluating the limit of $L_{c}(r, c)$ as w_{c} approaches $A_{c} \bar{L}^{\alpha}$ reveals:

$$
\lim _{w_{c} \rightarrow A_{c} \bar{L}^{\alpha}} L_{c}(r, c)=\bar{L}-\left(\left(A_{c} \bar{L}^{\alpha}\right)^{\sigma-1}+\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{\delta}{(\sigma-1)(1-\delta)}}\left(\frac{H_{c}}{1-\delta}\right)\left(\frac{B_{c}}{\bar{V}}\right)^{\frac{1}{1-\delta}}
$$

This limit is greater than zero if

$$
A_{c}<\bar{L}^{-\alpha}\left(\Omega^{\sigma-1}-\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}
$$

which is satisfied under the initial assumption given that it is the initial assumption.
(ii) Case $\# 2:\left(\Omega^{\sigma-1}-\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$ is the upper bound and evaluating the limit of $L_{c}(r, c)$ as w_{c} approaches $\left(\Omega^{\sigma-1}-\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$ reveals:

$$
\lim _{w_{c} \rightarrow \xi} L_{c}(r, c)=A_{c}^{-\frac{1}{\alpha}}\left(\Omega^{\sigma-1}-\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\left.\frac{1}{\alpha(\sigma-1}\right)}-\Omega^{\frac{\delta}{1-\delta}}\left(\frac{H_{c}}{1-\delta}\right)\left(\frac{B_{c}}{\bar{V}}\right)^{\frac{1}{1-\delta}}
$$

where $\xi=\left(\Omega^{\sigma-1}-\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$. This limit is greater than zero if

$$
A_{c}<\bar{L}^{-\alpha}\left(\Omega^{\sigma-1}-\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}
$$

which contradicts the initial assumption.
Given that case $\# 2$ results in a contradiction, only under the assumption in case \#1 that

$$
A_{c}<\bar{L}^{-\alpha}\left(\Omega^{\sigma-1}-\left(\frac{\kappa A_{r}}{\tau}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}
$$

ensures satisfaction of Bolzano's intermediate value theorem. The above is condition (2.9) in Lemma 2. Bolzano's intermediate value theorem then implies the existence of a set \widetilde{W} comprised of urban wages $\widetilde{w_{c}} \in\left(0, A_{c} \bar{L}^{\alpha}\right)$ at which $L_{c}(r, c)\left(\widetilde{w_{c}}\right)=0$. Denoting the supremum of this set sup \widetilde{W} and noting that $L_{c}(r, c)>0$ for any $w_{c}>\sup \widetilde{W}$, define a set $S=\left(\sup \widetilde{W}, A_{c} \bar{L}^{\alpha}\right)$. It follows for any $w_{c} \in S$, the values of $L_{c}(c, c), L_{c}(r, c)$, and $L_{r}(r, r)$ are all strictly positive in equilibrium, implying all worker types exist in equilibrium.

In Figure A.2. I sketch the location of set S in $\left(w_{c}, f\left(w_{c}\right)\right.$)-space. Important thresholds in the proof on the w_{c}-axis are demarcated by dashed lines. These thresholds delineate zones along the w_{c}-axis, within which result in different sizes for the various worker types, which I record below the horizontal axis in each zone. The set S, laying between sup \widetilde{W} and $A_{c} \bar{L}^{\alpha}$ exclusive, is the only zone for which all worker types are strictly positive.

Figure A.2: Existence of the Set S under Lemma 2

Notes: This figure identifies boundaries and the set of interest, S, that arise under the conditions set forth in Lemma 2. The w_{c}-axis represents the strictly positive wages $w_{c} \in \mathbb{R}_{++}$earned by workers in the city, while the y-axis represents the values f can take on when evaluated at $w_{c}, f\left(w_{c}\right) \in \mathbb{R}$. The important thresholds along the w_{c}-axis are labelled with dashed lines, which induce the formation of four "zones" along the horizontal axis. The existence of the various populations are specified below the horizontal axis. The only zone in which all worker types exist is the set S.

A. 5 Sketch of Proposition 1

Figure A.3: Existence and Uniqueness of an Equilibrium under Proposition 1

Notes: This figure illustrates what a unique equilibrium might look like under Proposition 1 which assumes Lemmas 1 (ii) and 2 and that the unique solution to 2.6 guaranteed to exist under 1 (ii) is an element of the set S from Lemma 2 , Define the function f as the LHS of Equation 2.6 subtracted from the RHS of 2.6 , where a solution to 2.6 is defined as a horizontal axis crossing point of f. The (horizontal) w_{c}-axis represents the strictly positive wages $w_{c} \in \mathbb{R}_{++}$earned by workers in the city, while the (vertical) $f\left(\left(w_{c}\right)\right.$-axis represents the values f can take on when evaluated at $w_{c}, f\left(w_{c}\right) \in \mathbb{R}$. The arrows in the bottom left and top right indicate the behaviour of f as w_{c} approaches zero from the right and positive infinity, respectively.

A. 6 Hat Algebra about the Unique Equilibrium

A.6.1 Log-linearisation

Taking the natural log of both sides of equation 2.6) setting $\sigma=\frac{1}{1-\delta}$ yields:

$$
\begin{align*}
& \ln \left(A_{r} \bar{L}+\left(\frac{w_{c}}{A_{c}}\right)^{\frac{1}{\alpha}}\left(w_{c}-A_{r}\right)\right)= \tag{A.35}\\
& \ln \left(\frac{\delta}{1-\delta}\right)-\left(\frac{1}{1-\delta}\right) \ln (\bar{V}) \\
& +\ln \left(B_{c}^{\frac{1}{1-\delta}} H_{c}\left(w_{c}^{\frac{1}{1-\delta}}+\left(\frac{\kappa A_{r}}{\tau}\right)^{\frac{1}{1-\delta}}\right)+\frac{B_{r}^{\frac{1}{1-\delta}} H_{r}}{\kappa^{\frac{1}{1-\delta}}}\left(\left(\frac{w_{c}}{\tau}\right)^{\frac{1}{1-\delta}}+\left(\kappa A_{r}\right)^{\frac{1}{1-\delta}}\right)\right)
\end{align*}
$$

Using the system of equations (A.6) through A.19) that summarise this model, certain components of equation A.35 can be reexpressed as follows:

$$
\begin{align*}
& A_{r} \bar{L}+\left(\frac{w_{c}}{A_{c}}\right)^{\frac{1}{\alpha}}\left(w_{c}-A_{r}\right)=Y_{r}+Y_{c} \tag{A.36}\\
& B_{c}^{\frac{1}{1-\delta}} H_{c}\left(w_{c}^{\frac{1}{1-\delta}}+\left(\frac{\kappa A_{r}}{\tau}\right)^{\frac{1}{1-\delta}}\right)+\frac{B_{r}^{\frac{1}{1-\delta}} H_{r}}{\kappa^{\frac{1}{1-\delta}}}\left(\left(\frac{w_{c}}{\tau}\right)^{\frac{1}{1-\delta}}+\left(\kappa A_{r}\right)^{\frac{1}{1-\delta}}\right) \tag{A.37}\\
& =\left(\frac{1-\delta}{\delta}\right) \bar{V}^{\frac{1}{1-\delta}}\left(X_{c}+X_{r}\right)
\end{align*}
$$

Additionally, applying similar algebraic transformations in the derivation of equation A.28, equilibrium total demand for the urban and rural good can be expressed:

$$
\begin{align*}
& X_{c}=\left(\frac{\delta}{1-\delta}\right)\left(\frac{w_{c}}{\bar{V}}\right)^{\frac{1}{1-\delta}}\left(B_{c}^{\frac{1}{1-\delta}} H_{c}+\frac{B_{r}^{\frac{1}{1-\delta}} H_{r}}{(\kappa \tau)^{\frac{1}{1-\delta}}}\right) \tag{A.38}\\
& X_{r}=\left(\frac{\delta}{1-\delta}\right)\left(\frac{w_{c}}{\bar{V}}\right)^{\frac{1}{1-\delta}}\left(\frac{B_{c}^{\frac{1}{1-\delta}} H_{r} \kappa^{\frac{1}{1-\delta}}}{\tau^{\frac{1}{1-\delta}}}+B_{r}^{\frac{1}{1-\delta}} H_{r}\right) \tag{A.39}
\end{align*}
$$

Finally, via equations A.25 and A.27 respectively, the products $B_{c}^{\frac{1}{1-\delta}} H_{c}$ and $B_{r}^{\frac{1}{1-\delta}} H_{r}$ can be written in equilibrium as:

$$
\begin{align*}
B_{c}^{\frac{1}{1-\delta}} H_{c} & =\frac{(1-\delta) P_{c}^{\frac{\delta}{1-\delta}} \bar{V}^{\frac{1}{1-\delta}}}{w_{c}^{\frac{\delta}{1-\delta}}} L_{c}(c, c) \tag{A.40}\\
B_{r}^{\frac{1}{1-\delta}} H_{r} & =\frac{(1-\delta) \kappa^{\frac{\delta}{1-\delta}} P_{r}^{\frac{\delta}{1-\delta}} V^{\frac{1}{1-\delta}}}{w_{c}^{\frac{\delta}{1-\delta}}}\left(L_{r}(r, r)+L_{c}(r, c)\right) \tag{A.41}
\end{align*}
$$

Let $\bar{L}_{A_{c}}=\partial \bar{L} / \partial A_{c}$. Totally differentiating equation A.35 and substituting equations A.36) through (A.41) where applicable reveals:

$$
\begin{align*}
& \left(\frac{\left(\frac{1+\alpha}{\alpha}\right) Y_{c}-A_{r} L_{c}}{Y_{c}+Y_{r}}\right) \widehat{w_{c}}-\left(\frac{\left(\frac{1}{\alpha}\right)\left(Y_{c}-A_{r} L_{c}\right)-A_{c} A_{r} \bar{L}_{A_{c}}}{Y_{c}+Y_{r}}\right) \widehat{A_{c}}+\left(\frac{A_{r} L_{c}+A_{r}^{2} \bar{L}_{A_{r}}}{Y_{c}+Y_{r}}\right) \widehat{A_{r}} \\
& +\left(\frac{B_{c} A_{r} \bar{L}_{B_{c}}}{Y_{c}+Y_{r}}\right) \widehat{B_{c}}+\left(\frac{B_{r} A_{r} \bar{L}_{B_{r}}}{Y_{c}+Y_{r}}\right) \widehat{B_{r}}=\left(\frac{\left(\frac{1}{1-\delta}\right) X_{c}}{X_{c}+X_{r}}\right) \widehat{w_{c}}+\left(\frac{\left(\frac{1}{1-\delta}\right) X_{r}}{X_{c}+X_{r}}\right) \widehat{A_{r}} \\
& -\left(\frac{1}{1-\delta}\right) \widehat{\bar{V}}+\left(\frac{\delta\left(\left(1+\left(\tau p_{r}\right)^{-\frac{1}{1-\delta}}\right) / P_{c}^{-\frac{\delta}{1-\delta}}\right) w_{c} L_{c}(c, c)}{X_{c}+X_{r}}\right)\left(\left(\frac{1}{1-\delta}\right) \widehat{B_{c}}+\widehat{H}_{c}\right) \\
& +\left(\frac{\delta\left(\left(\tau^{-\frac{1}{1-\delta}}+p_{r}^{-\frac{1}{1-\delta}}\right) / P_{r}^{-\frac{\delta}{1-\delta}}\right) w_{r}\left(L_{r}(r, r)+L_{c}(r, c)\right)}{X_{c}+X_{r}}\right)\left(\left(\frac{1}{1-\delta}\right) \widehat{B_{r}}+\widehat{H}_{r}\right) \\
& +\left(\frac{\left(\frac{\delta}{1-\delta}\right)\left(\left(\left(\tau p_{r}\right)^{-\frac{1}{1-\delta}} / P_{c}^{-\frac{\delta}{1-\delta}}\right) w_{c} L_{c}(c, c)-\left(\tau^{-\frac{1}{1-\delta}} / P_{r}^{-\frac{\delta}{1-\delta}}\right) w_{r}\left(L_{r}(r, r)+L_{c}(r, c)\right)\right)}{X_{c}+X_{r}}\right) \widehat{\kappa} \\
& -\left(\frac{\left(\frac{\delta}{1-\delta}\right)\left(\left(\left(\tau p_{r}\right)^{-\frac{1}{1-\delta}} / P_{c}^{-\frac{\delta}{1-\delta}}\right) w_{c} L_{c}(c, c)+\left(\tau^{-\frac{1}{1-\delta}} / P_{r}^{-\frac{\delta}{1-\delta}}\right) w_{r}\left(L_{r}(r, r)+L_{c}(r, c)\right)\right)}{X_{c}+X_{r}}\right) \widehat{\tau} \tag{A.42}
\end{align*}
$$

where $\widehat{x}=\frac{d x}{x}$ for $x=\left\{w_{c}, A_{c}, A_{r}, B_{c}, B_{r}, H_{c}, H_{r}, \kappa, \tau, \bar{V}\right\}$, with \widehat{x} denoting a (small) proportional change in x á la the familiar Jones (1965) "hat algebra." By equation (2.5), in equilibrium total demand for the good produced in i but consumed in $i^{\prime} \neq i$, denoted $X_{i i^{\prime}}$, can be written as:

$$
\begin{align*}
& X_{r c}=\delta\left(\left(\tau p_{r}\right)^{-\frac{1}{1-\delta}} / P_{c}^{-\frac{\delta}{1-\delta}}\right) w_{c} L_{c}(c, c) \tag{A.43}\\
& X_{c r}=\delta\left(\tau^{-\frac{1}{1-\delta}} / P_{r}^{-\frac{\delta}{1-\delta}}\right) w_{r}\left(L_{r}(r, r)+L_{c}(r, c)\right) \tag{A.44}
\end{align*}
$$

Similarly, equilibrium total demand for the good produced and consumed in i, denoted $X_{i i}$, can be expressed:

$$
\begin{align*}
& X_{c c}=\delta\left(1 / P_{c}^{-\frac{\delta}{1-\delta}}\right) w_{c} L_{c}(c, c) \tag{A.45}\\
& X_{r r}=\delta\left(p_{r}^{-\frac{1}{1-\delta}} / P_{r}^{-\frac{\delta}{1-\delta}}\right) w_{r}\left(L_{r}(r, r)+L_{c}(r, c)\right) \tag{A.46}
\end{align*}
$$

Since in equilibrium $Y_{c}+Y_{r}=X_{c}+X_{r}$, multiplying both sides of equation A.42 $\left(Y_{c}+Y_{r}\right)$, substituting equations A.43) through A.46) where applicable, substituting Y_{c} for X_{c} in the expression multiplying $\widehat{\widehat{w}_{c}}$ on the right hand side given $X_{c}=Y_{c}$ in equilibrium, and solving
for $\widehat{w_{c}}$ yields:

$$
\begin{align*}
\widehat{w_{c}}= & {\left[\frac{\left(\frac{1}{\alpha}\right)\left(A_{c} L_{c}^{\alpha}-A_{r}\right) L_{c}-\beta_{\bar{L} A_{c}} A_{r} \bar{L}}{\left(\left(\frac{1-\delta(1+\alpha)}{\alpha(1-\delta)}\right) A_{c} L_{c}^{\alpha}-A_{r}\right) L_{c}}\right] \widehat{A_{c}}+\left[\frac{\left(\left(\frac{1}{1-\delta}\right) L_{r}-L_{c}-\beta_{\bar{L} A_{r}} A_{r} \bar{L}\right) A_{r}}{\left(\left(\frac{1-\delta(1+\alpha)}{\alpha(1-\delta)}\right) A_{c} L_{c}^{\alpha}-A_{r}\right) L_{c}}\right] \widehat{A_{r}} } \\
& \left.+\left[\frac{\left(\frac{1}{1-\delta}\right)\left(X_{c c}+X_{r c}\right)-\beta_{\bar{L} B_{c}} A_{r} \bar{L}}{\left(\left(\frac{1-\delta(1+\alpha)}{\alpha(1-\delta)}\right) A_{c} L_{c}^{\alpha}-A_{r}\right) L_{c}}\right] \widehat{B_{c}}+\left[\frac{\left(\frac{1}{1-\delta}\right)\left(X_{c r}+X_{r r}\right)-\beta_{\bar{L} B_{r}} A_{r} \bar{L}}{\left(\left(\frac{1-\delta(1+\alpha)}{\alpha(1-\delta)}\right) A_{c} L_{c}^{\alpha}-A_{r}\right) L_{c}}\right] \widehat{B_{r}}\right] \widehat{H_{c}}+\left[\frac{X_{c r}+X_{r r}}{\left(\left(\frac{1-\delta(1+\alpha)}{\alpha(1-\delta)}\right) A_{c} L_{c}^{\alpha}-A_{r}\right) L_{c}}\right] \widehat{H}_{r} \\
& +\left[\frac{X_{r c}}{\left(\left(\frac{1-\delta(1+\alpha)}{\alpha(1-\delta)}\right) A_{c} L_{c}^{\alpha}-A_{r}\right) L_{c}}\right] \\
& +\left[\frac{\left(\frac{1}{1-\delta}\right)\left(X_{r c}-X_{c r}\right)}{\left(\left(\frac{1-\delta(1+\alpha)}{\alpha(1-\delta)}\right) A_{c} L_{c}^{\alpha}-A_{r}\right) L_{c}}\right] \widehat{\kappa}+\left[\frac{\left(\frac{1}{1-\delta}\right)\left(X_{r c}+X_{c r}\right)}{\left(A_{r}-\left(\frac{1-\delta(1+\alpha)}{\alpha(1-\delta)}\right) A_{c} L_{c}^{\alpha}\right) L_{c}}\right] \widehat{\tau} \\
& +\left[\frac{\left(\frac{1}{1-\delta}\right)\left(Y_{c}+Y_{r}\right)}{\left(A_{r}-\left(\frac{1-\delta(1+\alpha)}{\alpha(1-\delta)}\right) A_{c} L_{c}^{\alpha}\right) L_{c}}\right] \widehat{V} \\
= & \beta_{w_{c} A_{c}} \widehat{\widehat{A}_{c}+\beta_{w_{c} A_{r}} \widehat{A_{r}}+\beta_{w_{c} B_{c}} \widehat{B}_{c}+\beta_{w_{c} B_{r}} \widehat{B}_{r}+\beta_{w_{c} H_{c}} \widehat{H}_{c}+\beta_{w_{c} H_{r}} \widehat{H}_{r}} \tag{A.47}\\
& +\beta_{w_{c} \kappa} \widehat{\kappa}+\beta_{w_{c} \tau} \widehat{\tau}+\beta_{w_{c} \bar{V}} \widehat{\bar{V}}
\end{align*}
$$

where $\beta_{w_{c} x}$ and $\beta_{\bar{L} x}$ are the elasticities of the urban wage and region's population with respect to exogenous parameters $x=\left\{\tau, \kappa, \bar{V}, B_{i}, A_{i}, H_{i}\right\}$ for $i \in\{c, r\}$.

Applying logarithmic transformations to equations A.25), A.26), A.29), and A.30), totally differentiating, and substituting equation A.47) for \widehat{w}_{c} reveals:

$$
\begin{align*}
\widehat{w_{r}}= & \beta_{w_{c} A_{c}} \widehat{\widehat{A}_{c}}+\beta_{w_{c} A_{r}} \widehat{A_{r}}+\beta_{w_{c} B_{c}} \widehat{B_{c}}+\beta_{w_{c} B_{r}} \widehat{B_{r}}+\beta_{w_{c} H_{c}} \widehat{H}_{c}+\beta_{w_{c} H_{r}} \widehat{H}_{r} \\
& +\left(\beta_{w_{c} \kappa}-1\right) \widehat{\kappa}+\beta_{w_{c} \tau} \widehat{\tau}+\beta_{w_{c} \bar{V}} \widehat{V} \tag{A.48}\\
\widehat{L_{c}}= & \frac{1}{\alpha}\left(\beta_{w_{c} A_{c}}-1\right) \widehat{A_{c}}+\frac{1}{\alpha} \beta_{w_{c} A_{r}} \widehat{A}_{r}+\frac{1}{\alpha} \beta_{w_{c} B_{c}} \widehat{B_{c}}+\frac{1}{\alpha} \beta_{w_{c} B_{r}} \widehat{B_{r}}+\frac{1}{\alpha} \beta_{w_{c} H_{c}} \widehat{H_{c}} \\
& +\frac{1}{\alpha} \beta_{w_{c} H_{r}} \widehat{H_{r}}+\frac{1}{\alpha} \beta_{w_{c} \kappa} \widehat{\kappa}+\frac{1}{\alpha} \beta_{w_{c} \tau} \widehat{\tau}+\frac{1}{\alpha} \beta_{w_{c} \bar{V}} \widehat{\widehat{V}} \tag{A.49}
\end{align*}
$$

$$
\begin{align*}
& \widehat{L_{c}(c, c)}=\left[\left(\frac{\delta}{1-\delta}\right) \frac{\beta_{w_{c} A_{c}}}{P_{c}^{-\frac{\delta}{1-\delta}}}\right] \widehat{A_{c}}+\left[\left(\frac{\delta}{1-\delta}\right)\left(\frac{\left(\tau p_{r}\right)^{-\frac{\delta}{1-\delta}}+\beta_{w_{c} A_{r}}}{P_{c}^{-\frac{\delta}{1-\delta}}}\right)\right] \widehat{A_{r}} \\
& +\left[\left(\frac{1}{1-\delta}\right)\left(1+\frac{\delta \beta_{w_{c} B_{c}}}{P_{c}^{-\frac{\delta}{1-\delta}}}\right)\right] \widehat{B_{c}}+\left[\left(\frac{\delta}{1-\delta}\right) \frac{\beta_{w_{c} B_{r}}}{P_{c}^{-\frac{\delta}{1-\delta}}}\right] \widehat{B_{r}} \\
& +\left[1+\left(\frac{\delta}{1-\delta}\right) \frac{\beta_{w_{c} H_{c}}}{P_{c}^{-\frac{\delta}{1-\delta}}}\right] \widehat{H}_{c}+\left[\left(\frac{\delta}{1-\delta}\right) \frac{\beta_{w_{c} H_{r}}}{P_{c}^{-\frac{\delta}{1-\delta}}}\right] \widehat{H}_{r} \tag{A.50}\\
& +\left[\left(\frac{\delta}{1-\delta}\right)\left(\frac{\left(\tau p_{r}\right)^{-\frac{\delta}{1-\delta}}+\beta_{w_{c} \kappa}}{P_{c}^{-\frac{\delta}{1-\delta}}}\right)\right] \widehat{\kappa}+\left[\left(\frac{\delta}{1-\delta}\right)\left(\frac{\beta_{w_{c} \tau}-\left(\tau p_{r}\right)^{-\frac{\delta}{1-\delta}}}{P_{c}^{-\frac{\delta}{1-\delta}}}\right)\right] \widehat{\tau} \\
& +\left[\left(\frac{1}{1-\delta}\right)\left(\frac{\delta \beta_{w_{c} \bar{V}}}{P_{c}^{-\frac{\delta}{1-\delta}}}-1\right)\right] \hat{\bar{V}} \\
& \widehat{L_{c}(r, c)}=\left[\frac{\left(1-\mu_{c c}^{L_{c}}\left(\frac{\delta}{1-\delta}\right)\left(\frac{1}{P_{c}}\right)^{-\frac{\delta}{1-\delta}}\right) \beta_{w_{c} A_{c}}-1}{\alpha \mu_{r c}^{L_{c}}}\right] \widehat{A_{c}} \\
& +\left[\frac{\left(1-\mu_{c c}^{L_{c}}\left(\frac{\delta}{1-\delta}\right)\left(\frac{1}{P_{c}}\right)^{-\frac{\delta}{1-\delta}}\right) \beta_{w_{c} A_{r}}-\mu_{c c}^{L_{c}}\left(\frac{\delta}{1-\delta}\right)\left(\frac{\tau p_{r}}{P_{c}}\right)^{-\frac{\delta}{1-\delta}}}{\alpha \mu_{r c}^{L_{c}}}\right] \widehat{A_{r}} \\
& +\left[\frac{\left(1-\mu_{c c}^{L_{c}}\left(\frac{\delta}{1-\delta}\right)\left(\frac{1}{P_{c}}\right)^{-\frac{\delta}{1-\delta}}\right) \beta_{w_{c} B_{c}}-\mu_{c c}^{L_{c}}\left(\frac{1}{1-\delta}\right)}{\alpha \mu_{r c}^{L_{c}}}\right] \widehat{B_{c}} \\
& +\left[\frac{\left(1-\mu_{c c}^{L_{c}}\left(\frac{\delta}{1-\delta}\right)\left(\frac{1}{P_{c}}\right)^{-\frac{\delta}{1-\delta}}\right) \beta_{w_{c} B_{r}}}{\alpha \mu_{r c}^{L_{c}}}\right] \widehat{B_{r}} \\
& +\left[\frac{\left(1-\mu_{c c}^{L_{c}}\left(\frac{\delta}{1-\delta}\right)\left(\frac{1}{P_{c}}\right)^{-\frac{\delta}{1-\delta}}\right) \beta_{w_{c} H_{c}}-\mu_{c c}^{L_{c}}}{\alpha \mu_{r c}^{L_{c}}}\right] \widehat{H}_{c} \tag{A.51}\\
& +\left[\frac{\left(1-\mu_{c c}^{L_{c}}\left(\frac{\delta}{1-\delta}\right)\left(\frac{1}{P_{c}}\right)^{-\frac{\delta}{1-\delta}}\right) \beta_{w_{c} H_{r}}}{\alpha \mu_{r c}^{L_{c}}}\right] \widehat{H}_{r} \\
& +\left[\frac{\left(1-\mu_{c c}^{L_{c}}\left(\frac{\delta}{1-\delta}\right)\left(\frac{1}{P_{c}}\right)^{-\frac{\delta}{1-\delta}}\right) \beta_{w_{c} \kappa}-\mu_{c c}^{L_{c}}\left(\frac{\delta}{1-\delta}\right)\left(\frac{\tau p_{r}}{P_{c}}\right)^{-\frac{\delta}{1-\delta}}}{\alpha \mu_{r c}^{L_{c}}}\right] \widehat{\kappa} \\
& +\left[\frac{\left(1-\mu_{c c}^{L_{c}}\left(\frac{\delta}{1-\delta}\right)\left(\frac{1}{P_{c}}\right)^{-\frac{\delta}{1-\delta}}\right) \beta_{w_{c} \tau}+\mu_{c c}^{L_{c}}\left(\frac{\delta}{1-\delta}\right)\left(\frac{\tau p_{r}}{P_{c}}\right)^{-\frac{\delta}{1-\delta}}}{\alpha \mu_{r c}^{L_{c}}}\right] \widehat{\tau} \\
& +\left[\frac{\left(1-\mu_{c c}^{L_{c}}\left(\frac{\delta}{1-\delta}\right)\left(\frac{1}{P_{c}}\right)^{-\frac{\delta}{1-\delta}}\right) \beta_{w_{c} \bar{V}}-\mu_{c c}^{L_{c}}\left(\frac{1}{1-\delta}\right)}{\alpha \mu_{r c}^{L_{c}}}\right] \hat{\bar{V}}
\end{align*}
$$

$$
\begin{align*}
\widehat{L_{r}}=\widehat{L_{r}(r, r)}= & \underbrace{\left[\frac{\beta_{\bar{L} A_{c}}+\mu_{c}\left(1-\frac{1}{\alpha} \beta_{w_{c} A_{c}}\right)}{\mu_{r}}\right]}_{\beta_{L_{r} A_{c}}} \widehat{A_{c}}+\left[\frac{\alpha \beta_{\bar{L} A_{r}}-\mu_{c} \beta_{w_{c} A_{r}}}{\alpha \mu_{r}}\right] \widehat{A_{r}} \\
& +\left[\frac{\alpha \beta_{\bar{L} B_{c}}-\mu_{c} \beta_{w_{c} B_{c}}}{\alpha \mu_{r}}\right] \widehat{B_{c}}+\left[\frac{\alpha \beta_{\bar{L} B_{r}}-\mu_{c} \beta_{w_{c} B_{r}}}{\alpha \mu_{r}}\right] \widehat{B_{r}}+\left[\frac{-\mu_{c} \beta_{w_{c} H_{c}}}{\alpha \mu_{r}}\right] \widehat{H_{c}} \\
& +\left[\frac{-\mu_{c} \beta_{w_{c} H_{r}}}{\alpha \mu_{r}}\right] \widehat{H}_{r}+\left[\frac{-\mu_{c} \beta_{w_{c} \kappa}}{\alpha \mu_{r}}\right] \widehat{\kappa}+\left[\frac{-\mu_{c} \beta_{w_{c} \tau}}{\alpha \mu_{r}}\right] \widehat{\tau}+\left[\frac{-\mu_{c} \beta_{w_{c} \bar{V}}}{\alpha \mu_{r}}\right] \widehat{\bar{V}} \tag{A.52}
\end{align*}
$$

where the various μ represent labour shares, specifically:

$$
\begin{aligned}
\mu_{c c}^{L_{c}} & =\frac{L_{c}(c, c)}{L_{c}} \\
\mu_{r c}^{L_{c}} & =\frac{L_{c}(r, c)}{L_{c}} \\
\mu_{c} & =\frac{L_{c}}{\bar{L}} \\
\mu_{r} & =\frac{L_{r}}{\bar{L}}
\end{aligned}
$$

A.6.2 Deriving the Reduced-Form Relationship of Interest (Equation 2.8)

Isolating the parameter $\beta_{w_{c} A_{c}}$ in equation A.47) and substituting $\eta=(1+\alpha) / \alpha-1 /(1-\delta)$, we can rewrite $\beta_{w_{c} A_{c}}$ as:

$$
\beta_{w_{c} A_{c}}=\frac{\left(\frac{\mu_{c}}{\alpha}\right) A_{c} L_{c}^{\alpha}-\left(\frac{\mu_{c}+\alpha \beta_{\bar{L} A_{c}}}{\mu_{c}}\right) A_{r}}{\mu_{c}\left(\eta A_{c} L_{c}^{\alpha}-A_{r}\right)}
$$

Substituting the above into $\beta_{L_{r} A_{c}}$ from equation A.52) and performing algebraic manipulation yields:

$$
\begin{aligned}
\beta_{L_{r} A_{c}} & =\frac{\beta_{\bar{L} A_{c}}}{\mu_{r}}+\frac{\mu_{c}}{\mu_{r}}\left(1-\frac{\beta_{w_{c} A_{c}}}{\alpha}\right) \\
& =\frac{\beta_{\bar{L} A_{c}}}{\mu_{r}}+\frac{\mu_{c}}{\mu_{r}}\left(1-\frac{1}{\alpha}\left(\frac{\left(\frac{\mu_{c}}{\alpha}\right) A_{c} L_{c}^{\alpha}-\left(\frac{\mu_{c}+\alpha \beta_{\overline{\bar{c} A_{c}}}}{\mu_{c}}\right) A_{r}}{\mu_{c}\left(\eta A_{c} L_{c}^{\alpha}-A_{r}\right)}\right)\right) \\
& =\frac{\left(1 /\left(\alpha^{2} \eta\right)-1\right) \mu_{c}-\beta_{\bar{L} A_{c}}}{\mu_{r}}\left[\frac{\left(\frac{1-\alpha}{\alpha^{2}}\right)\left(\frac{(1+\alpha) \mu_{c}+\alpha \beta_{\bar{L} A_{c}}}{\left(1 /\left(\alpha^{2} \eta\right)-1\right) \mu_{c}-\beta_{\bar{L} A_{c}}}\right)-\left(A_{c} L_{c}^{\alpha} / A_{r}\right)}{\left(A_{c} L_{c}^{\alpha} / A_{r}\right)-\eta^{-1}}\right] \\
& =\Theta_{1}\left[\frac{\Theta_{2}-\left(A_{c} L_{c}^{\alpha} / A_{r}\right)}{\left(A_{c} L_{c}^{\alpha} / A_{r}\right)-\Theta_{3}}\right]
\end{aligned}
$$

where again

$$
\begin{aligned}
& \Theta_{1}=\frac{\left(1 /\left(\alpha^{2} \eta\right)-1\right) \mu_{c}-\beta_{\bar{L} A_{c}}}{\mu_{r}} \\
& \Theta_{2}=\left(\frac{1-\alpha}{\alpha^{2}}\right)\left(\frac{(1+\alpha) \mu_{c}+\alpha \beta_{\bar{L} A_{c}}}{\left(1 /\left(\alpha^{2} \eta\right)-1\right) \mu_{c}-\beta_{\bar{L} A_{c}}}\right) \\
& \Theta_{3}=\frac{1}{\eta}
\end{aligned}
$$

A. 7 Proof of Proposition 2

Proof. The assumptions under Proposition 1 and the assumption on the size of $\beta_{\bar{L} A_{c}}$ ensure Θ_{1}, Θ_{2}, and Θ_{3} are strictly positive in equilibrium.

Conditions for $\Theta_{1}>0$. For Θ_{1} to be strictly positive, we require 1) that $\left(1 /\left(\alpha^{2} \eta\right)-1\right)>0$ and 2) that $\beta_{\bar{L} A_{c}}<\left(1 /\left(\alpha^{2} \eta\right)-1\right) \mu_{c}$. The former is ensured by the assumption that $\sigma>1$. The product $\alpha^{2} \eta$ may be expressed as:

$$
\alpha^{2} \eta=\alpha^{2}\left(\frac{1+\alpha}{\alpha}-\frac{1}{1-\delta}\right)=\alpha^{2}\left(\frac{1+\alpha}{\alpha}-\sigma\right)=\alpha(1+\alpha-\alpha \sigma)
$$

Thus, it follows that:

$$
\begin{aligned}
\left(1 /\left(\alpha^{2} \eta\right)-1\right)>0 & \Longleftrightarrow 1 /\left(\alpha^{2} \eta\right)>1 \\
& \Longleftrightarrow \frac{1}{\alpha}>1+\alpha-\alpha \sigma \\
& \Longleftrightarrow \sigma>1
\end{aligned}
$$

which holds by my initial assumption on σ. The latter is guaranteed by $\beta_{\bar{L} A_{c}}<\left(1 /\left(\alpha^{2} \eta\right)-1\right) \mu_{c}$. Therefore, $\Theta_{1}>0$.

Conditions for $\Theta_{2}>0$. For Θ_{2}, we require that 1) $\left.\alpha<1,2\right)\left(1 /\left(\alpha^{2} \eta\right)-1\right)>0$, and 3) $\beta_{\bar{L} A_{c}}<\left(1 /\left(\alpha^{2} \eta\right)-1\right) \mu_{c}$. The first requirement is satisfied by my initial assumption on α and the other two requirements are satisfied by proof of $\Theta>0$.

Conditions for $\Theta_{3}>0$. For Θ_{3} to be strictly positive, it must be that $\eta>0$:

$$
\eta=\left(\frac{1+\alpha}{\alpha}-\frac{1}{1-\delta}\right)>0 \Longleftrightarrow \frac{1+\alpha}{\alpha}>\frac{1}{1-\delta}
$$

which is true by assumption in Proposition 1. Assuming that $A_{c} L_{c}^{\alpha} / A_{r}>\max \left\{\Theta_{2}, \Theta_{3}\right\}$, it follows that:

$$
\beta_{L_{r} A_{c}}=\underbrace{\Theta_{1}}_{>0}[\underbrace{\left(\Theta_{2}-\frac{A_{c} L_{c}^{\alpha}}{A_{r}}\right)}_{<0} / \underbrace{\left(\frac{A_{c} L_{c}^{\alpha}}{A_{r}}-\Theta_{3}\right)}_{>0}]<0
$$

A. 8 Back of the Envelope Proposition 2 Calibration

To get a rough feel for the sizes of the bounds in Proposition 2, I calibrate exogenous parameters in the model using external data, values in the literature, and the structural requirements set forth in Proposition 1.

Preferences and Agglomeration (δ, σ, and α). The Bureau of Labor Statistics (BLS) publish annual expenditure breakdowns of the average American household in the Consumption Expenditure (CE) Survey (BLS, 2021). Dividing the average annual expenditure on shelter (i.e., mortgage payments and rents in the CE) by average annual after-tax income, I plot the percent of household income going towards housing from 2013 to 2019 in Figure A. 4 . American households spend approximately 20% of their after-tax income on housing each year. Taking this fact to this model, I calibrate $1-\delta=0.2$. By Lemma 1 (ii), $1 /(1-\delta)=\sigma$, implying if $1-\delta=0.2, \sigma=5$. An elasticity of substitution equal to 5 lands very close to calibrations common in the spatial literature. For instance Allen and Arkolakis (2014) and Redding (2016) calibrate $\sigma=4$ in their quantitative spatial models while most numerical core-periphery analyses in Fujita, Krugman, and Venables (1999) set $\sigma=5$. Lemma 1(ii) also requires that $\sigma \in\left(\frac{1}{\alpha}, \frac{1+\alpha}{\alpha}\right)$. Thus, if $\sigma=5, \alpha \in(0.2,0.25)$. Most of the literature on agglomeration spillovers, such as Rosenthal and Strange (2004), implies α is small, so I choose a value of α close to the lower bound, say $\alpha=0.21$.

Urban Population Share $\left(\mu_{c}\right)$. The Bureau of Economic Analysis (BEA) publish annual county population estimates (BEA, 2021). By first grouping counties into "rural" and "urban" classifications based upon their Rural-Urban Continuum Code (RUCC) designated by the United States Department of Agriculture (USDA) Economic Research Service (ERS) (ERS, 2020), I aggregate the population of US residents living in urban counties and dividing that value by the total US population, which yields the US urban population share. I plot the evolution of this share, as well as the share of US residents living in rural counties, from 2013 to 2019 in Figure A.5. Over this period of observation, approximately 85% of the US population resides in a county designated as "urban." As such, I set $\mu_{c}=0.85$.

Urban TFP Extra-Regional In-Migration Elasticity $\left(\beta_{\bar{L} A_{c}}\right)$. Hornbeck and Moretti (2021) present a method for estimating the number of workers moving to a city in response to local manufacturing TFP growth. Using data on TFP growth in cities around the U.S. from 1980 to 1990, they show how their estimation method can estimate the number of workers

Figure A.4: Average Household Housing Expenditure Share, 2013-2019

Source: Bureau of Labor Statistics

Notes: This figure plots the annual mean share of household after-tax income spent on housing (mortgages or rent) in the U.S. from 2013 to 2019. The data are sourced from the BLS Consumer Expenditure Survey (BLS, 2021).
moving from other cities in the U.S. from 1980 to 2000 directly in response to this TFP growth. They use three cities as examples: Houston, San Jose, and Cincinnati. I use the results of these cities in combination with initial employment data from the 1980 Quarterly Census of Employment and Wages (QCEW) publicly available through the BLS to derive a ballpark calibration for $\beta_{\bar{L} A_{c}}$.

Houston. In response to its 2.4% TFP growth, Hornbeck and Moretti (2021) estimate that, on average, 291 workers moved from another city in the U.S. to Houston. Given there are 193 Metropolitan Statistical Areas (MSAs) in their sample, multiplying this amount by the city average, the total in-migration to Houston was roughly 56,163 workers from 1980 to 2000. According to the QCEW, in January of 1980, 1,172,259 people were employed in Houston, implying local employment grew 4.7%. It follows that:

$$
\beta_{\bar{L} A_{c}}^{\mathrm{HOU}}=\frac{\partial \bar{L}}{\partial A_{c}} \frac{A_{c}}{\bar{L}}=\frac{4.7 \%}{2.4 \%}=2.0
$$

Figure A.5: Urban and Rural U.S. Employment Shares, 2013-2019

Source: Bureau of Economic Analysis and U.S. Department of Agriculture Economic Research Service

Notes: This figure plots the annual urban and rural employment shares in the U.S. from 2013 to 2019. The "urban" employment total is the number of employees reported by BEA (2021) as working in a county designated as urban by ERS (2020), while the rural employment total is the number of employees working in a rural (nonurban) county. Dividing these totals by the total U.S. workforce count for each year yields the series plotted above.

San Jose. On account of 16.4% manufacturing TFP growth, San Jose saw 272,709 new workers move to the city ($=1,413$ new workers from other cities on average * 193 MSAs). The initial 1980 QCEW employment level was 579,752, implying the San Jose employment grew 47% from 1980 to 2000 on account of the TFP shock. Thus:

$$
\beta_{\bar{L} A_{c}}^{\mathrm{SJ}}=\frac{\partial \bar{L}}{\partial A_{c}} \frac{A_{c}}{\bar{L}}=\frac{47.0 \%}{16.4 \%}=2.9
$$

Cincinnati. Cincinnati's 2.0% manufacturing TFP growth stimulated 16,212 workers to move from elsewhere ($=$ average of 84 workers coming from other cities * 193 MSAs). Since the initial 1980 QCEW employment count was 501,985 , TFP growth resulted in 3.2% employment growth via in-migration. Therefore:

$$
\beta_{\bar{L} A_{c}}^{\mathrm{CIN}}=\frac{\partial \bar{L}}{\partial A_{c}} \frac{A_{c}}{\bar{L}}=\frac{3.2 \%}{2.0 \%}=1.6
$$

Table A.1: Proposition 2 Calibration Parameter Values

Parameter	Source	Value	Comments
Goods expenditure share	BLS (2021)	$\delta=0.8$	Similar to other quantitative spatial model calibration exercises. For instance, Redding (2016) sets $\delta=0.75$.
Goods elasticity of substitution	$\begin{aligned} & \text { Lemma } 1(i i) \\ & \text { via BLS }(2021) \end{aligned}$	$\sigma=5.0$	Consistent with σ selected in Allen and Arko-lakis (2014), Redding (2016), and Fujita, Krugman, and Venables (1999).
Agglomeration externality	$\begin{aligned} & \text { Lemma } 1(i i) \\ & \text { via BLS (2021) } \end{aligned}$	$\alpha=0.21$	Lower end of the range permitted by Lemma 1 (ii).
Urban labour share	$\begin{array}{\|l\|l\|} \hline \text { BEA } & (2021) ; \\ \hline \text { ERS } & 2020) \\ \hline \end{array}$	$\mu_{c}=0.85$	Urban/rural designation arising from countylevel RUCC groupings.
Urban TFP Elasticity of In-Migration	Hornbeck and Moretti (2021)	$\beta_{\bar{L} A_{c}}=2.0$	Median elasticity between Houston, San Jose, and Cincinnati identified by Hornbeck and Moretti (2021).

These elasticities imply a sensible calibration would be in the neighbourhood of two, so I choose $\beta_{\bar{L} A_{c}}=2$.

Calibrated Bounds (Θ_{2} and Θ_{3}). My choice of parameter values based upon the data, literature, and convention are summarised in Table A.1. Substituting these values into the inequality (2.11) in Proposition 2ds reveals (2.11) is satisfied under these calibrated values:

$$
\underbrace{2.0}_{=\beta_{\bar{L} A_{c}}}<\underbrace{24.45}_{=\left(1 /\left(\alpha^{2} \eta\right)-1\right) \mu_{c}}
$$

Substituting the calibrated values into the equations for Θ_{2} and Θ_{3} yields:

$$
\begin{aligned}
\Theta_{2} & =1.16 \\
\Theta_{3} & =1.31
\end{aligned}
$$

Given $\Theta_{3}>\Theta_{2}$, the binding constraint is that $\left(A_{c} L_{c}^{\alpha} / A_{r}\right)>\Theta_{3}$. Thus, for Proposition 2 to hold under this parameter regime, the marginal productivity of labour ratio must be greater than 1.31 , meaning a worker in the city must be no less than 31% more productive in the city than in the rural town.

Moretti (2011) finds substantial county-level manufacturing TFP heterogeneity across the U.S., reporting that the most productive county in their sample is 2.9 times more productive than the least productive county, giving weight to the possibility that the gap between urban and rural TFP may be large enough to satisfy the lower bound identified in this calibration exercise.

